期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
A fully coupled thermo-hydro-mechanical model for unsaturated porous media 被引量:5
1
作者 Weizhong Chen Xianjun Tan Hongdan Yu Guojun Wu Shanpo Jia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期31-40,共10页
In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and ... In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and fully unified coupled thermo-hydro-mechanical model for unsaturated porous media is required to simulate the complex coupling mechanisms involved.Based on modified Darcy's and Fourier's laws,equations of mechanical equilibrium,mass conservation and energy conservation are derived by introducing void ratio and volumetric liquid water content into the model.The newly derived model takes into account the effects of temperature on the dynamic viscosity of liquid water and void ratio,the influence of liquid flow on temperature gradient(thermo-osmosis),the influence on mass and heat conservation equations,and the influence of heat flow on water pressure gradient and thermal convection.The new coupled THM constitutive model is constructed by a finite element program and is used to simulate the coupled behavior of a tunnel during excavation,ventilation and concrete lining stages.Oil and gas engineering,underground disposal of nuclear waste and tunnel engineering may be benefited from the development of the new model. 展开更多
关键词 porous media unsaturated media coupled thermo-hydro-mechanical (thm model
下载PDF
Simulation of coupled THM process in surrounding rock mass of nuclear waste repository in argillaceous formation 被引量:1
2
作者 蒋中明 HOXHA Dashnor +1 位作者 HOMAND Fran?oise 陈永贵 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期631-637,共7页
To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-si... To investigate and analyze the thermo-hydro-mechanical(THM) coupling phenomena of a surrounding rock mass in an argillaceous formation, a nuclear waste disposal concept in drifts was represented physically in an in-situ test way. A transversely isotropic model was employed to reproduce the whole test process numerically. Parameters of the rock mass were determined by laboratory and in-situ experiments. Based on the numerical simulation results and in-situ test data, the variation processes of pore water pressure, temperature and deformation of surrounding rock were analyzed. Both the measured data and numerical results reveal that the thermal perturbation is the principal driving force which leads to the variation of pore water pressure and deformations in the surrounding rock. The temperature, pore pressure and deformation of rock mass change rapidly at each initial heating stage with a constant heating power. The temperature field near the heater borehole is relatively steady in the subsequent stages of the heating phase. However, the pore pressure and deformation fields decrease gradually with temperature remaining unchanged condition. It also shows that a transversely isotropic model can reproduce the THM coupling effects generating in the near-field of a nuclear waste repository in an argillaceous formation. 展开更多
关键词 argillaceous formation thermo-hydro-mechanical(thm process in-situ test
下载PDF
Coupled thermo-hydro-mechanical simulation of CO2 enhanced gas recovery with an extended equation of state module for TOUGH2MP-FLAC3D 被引量:1
3
作者 Yang Gou Zhengmeng Hou +2 位作者 Mengting Li Wentao Feng Hejuan Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期904-920,共17页
As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.B... As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2. 展开更多
关键词 Carbon dioxide (CO2) enhanced gas recovery (CO2-EGR) CO2 sequestration Equation of state (EOS) coupled thermo-hydro-mechanical (thm) modeling TOUGH2MP-FLAC3D
下载PDF
Comparison of numerical codes for coupled thermo-hydro-mechanical simulations of fractured media
4
作者 Ahmad Zareidarmiyan Hossein Salarirad +3 位作者 Victor Vilarrasa Kwang-Il Kim Jaewon Lee Ki-Bok Min 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期850-865,共16页
Geo-energy and geo-engineering applications,such as improved oil recovery(IOR),geologic carbon storage,and enhanced geothermal systems(EGSs),involve coupled thermo-hydro-mechanical(THM)processes that result from fluid... Geo-energy and geo-engineering applications,such as improved oil recovery(IOR),geologic carbon storage,and enhanced geothermal systems(EGSs),involve coupled thermo-hydro-mechanical(THM)processes that result from fluid injection and production.In some cases,reservoirs are highly fractured and the geomechanical response is controlled by fractures.Therefore,fractures should explicitly be included into numerical models to realistically simulate the THM responses of the subsurface.In this study,we perform coupled THM numerical simulations of water injection into naturally fractured reservoirs(NFRs)using CODE_BRIGHT and TOUGH-UDEC codes.CODE_BRIGHT is a finite element method(FEM)code that performs fully coupled THM analysis in geological media and TOUGH-UDEC sequentially solves coupled THM processes by combining a finite volume method(FVM)code that solves nonisothermal multiphase flow(TOUGH2)with a distinct element method(DEM)code that solves the mechanical problem(UDEC).First,we validate the two codes against a semi-analytical solution for water injection into a single deformable fracture considering variable permeability based on the cubic law.Then,we compare simulation results of the two codes in an idealized conceptual model that includes one horizontal fracture and in a more realistic model with multiple fractures.Each code models fractures differently.UDEC calculates fracture deformation from the fracture normal and shear stiffnesses,while CODE_BRIGHT treats fractures as equivalent porous media and uses the equivalent Young’s modulus and Poisson’s ratio of the fracture.Finally,we obtain comparable results of pressure,temperature,stress and displacement distributions and evolutions for the single horizontal fracture model.Despite some similarities,the two codes provide increasingly different results as model complexity increases.These differences highlight the challenging task of accurately modeling coupled THM processes in fractured media given their high nonlinearity. 展开更多
关键词 coupled thermo-hydro-mechanical(thm) analysis Improved oil recovery(IOR) Naturally fractured reservoir(NFR) CODE_BRIGHT TOUGH-UDEC
下载PDF
THM Coupled Modeling in Near Field of an Assumed HLW Deep Geological Disposal Repository
5
作者 ShenZhenyao LiGuoding LiShushen 《Journal of China University of Geosciences》 SCIE CSCD 2004年第4期388-394,共7页
One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro- mechanical (THM) coupl... One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro- mechanical (THM) coupled processes associated with an HLW disposal repository. Non-linear coupled equations, which are used to describe the THM coupled process and are suited to saturated-unsaturated porous media, are presented in this paper. A numerical method to solve these equations is put forward, and a finite element code is developed. This code is suited to the plane strain or axis-symmetry problem. Then this code is used to simulate the THM coupled process in the near field of an ideal disposal repository. The temperature vs. time, hydraulic head vs. time and stress vs. time results show that, in this assumed condition, the impact of temperature is very long (over 10 000 a) and the impact of the water head is short (about 90 d). Since the stress is induced by temperature and hydraulic head in this condition, the impact time of stress is the same as that of temperature. The results show that THM coupled processes are very important in the safety analysis of an HLW deep geological disposal repository. 展开更多
关键词 HLW disposal thermo-hydro-mechanical (thm) coupled equations modeling.
下载PDF
A coupled cryogenic thermo-hydro-mechanical model for frozen medium:Theory and implementation in FDEM
6
作者 Lei Sun Xuhai Tang +3 位作者 Kareem Ramzy Aboayanah Qi Zhao Quansheng Liu Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2024年第11期4335-4353,共19页
This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discret... This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions. 展开更多
关键词 thermo-hydro-mechanical(thm)coupling Low temperature Heat transfer Water migration Frost heave Combined finite-discrete element method(FDEM)
下载PDF
Simulations of THM processes in buffer-rock barriers of high-level waste disposal in an argillaceous formation 被引量:2
7
作者 Xiaoshuo Li Chunliang Zhang Klaus-Jürgen Rhlig 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期277-286,共10页
The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal con... The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept. 展开更多
关键词 thermo-hydro-mechanical(thm coupling processes Clay formation Unsaturated porous media Bentonite buffer CODE BRIGHT
下载PDF
Thermo-hydro-mechanical modeling of fault discontinuities using zero-thickness interface element
8
作者 Ali Ranjbar Hossein Hassani +1 位作者 Kourosh Shahriar Mohammad Javad Ameri Shahrabi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期74-88,共15页
In this paper,a coupled thermo-hydro-mechanical(THM)simulation in a faulted deformable porous medium is presented.This model involves solving the mass conservation,linear momentum balance,and energy balance equations ... In this paper,a coupled thermo-hydro-mechanical(THM)simulation in a faulted deformable porous medium is presented.This model involves solving the mass conservation,linear momentum balance,and energy balance equations which are derived from the Biot’s consolidation theory.Fluid pore pressure,solid displacement,and temperature are chosen as initial variables in these equations,and the finite element method in combination with the interface element is used for spatial discretization of continuous and discontinuities(fault)parts of the medium to solve the equations.The main purpose of this study is providing precise formulations,applicability,and ability of the triple-node zero-thickness interface element in THM modeling of faults.It should be noted that the system of equations is solved using a computer code written in Matlab program.In order to verify the developed method,simulations of index problems such as Mandel’s problem,and coupled modeling of a faulted porous medium and a faulted aquifer are presented.The modeling results obtained from the developed method show a very good agreement with those by other modeling methods,which indicates its accuracy. 展开更多
关键词 thermo-hydro-mechanical(thm) simulation Geomechanical coupling Zero-thickness ELEMENT Joint ELEMENT FINITE ELEMENT
下载PDF
Parametric study of thermo-hydro-mechanical response of claystone with consideration of steel corrosion
9
作者 Y.Jia H.B.Bian +1 位作者 G.Duveau J.F.Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期67-80,共14页
In this paper,the thermo-hydro-mechanical(THM)response of claystone is studied via a series of parametric studies,considering the evolution of mechanical properties and deformation behavior of corroded steel.The numer... In this paper,the thermo-hydro-mechanical(THM)response of claystone is studied via a series of parametric studies,considering the evolution of mechanical properties and deformation behavior of corroded steel.The numerical simulations are performed by using a coupled THM finite element code and two different constitutive models:a visco-elastoplastic model for geological formation and a von Mises type model for steel liner.The mechanical properties and deformation behavior of corroded steel are described in a conceptual model.Finally,a disposal tunnel supported by a steel liner is studied and a series of parametric studies is defined to demonstrate the corrosion effects of steel liner on the THM response of the claystone.The comparison of different numerical calculations exhibits that the volumetric expansion related to corrosion products has an important impact on the stress and displacement fields in the claystone surrounding the disposal tunnel.However,the evolutions of temperature and liquid pressure in the claystone are essentially controlled by its THM properties and independent of the steel corrosion. 展开更多
关键词 Claystone Steel corrosion thermo-hydro-mechanical(thm) coupling Disposal tunnel Corrosion rate Volumetric expansion of corrosion products
下载PDF
岩石破裂过程THMD耦合数值模型研究 被引量:8
10
作者 李连崇 唐春安 +1 位作者 杨天鸿 王大国 《计算力学学报》 EI CAS CSCD 北大核心 2008年第6期764-769,共6页
从岩石的细观非均匀性特点出发,应用损伤力学、热力学和渗流力学理论,建立了岩体热(温度)-水(渗流)-岩(应力)-损伤耦合数值模型(THMD model),把岩石(体)THM耦合问题的研究从应力状态分析深入到损伤、破坏过程分析之中。探讨了THM耦合作... 从岩石的细观非均匀性特点出发,应用损伤力学、热力学和渗流力学理论,建立了岩体热(温度)-水(渗流)-岩(应力)-损伤耦合数值模型(THMD model),把岩石(体)THM耦合问题的研究从应力状态分析深入到损伤、破坏过程分析之中。探讨了THM耦合作用下岩石材料的细观结构损伤及其诱发的材料力学性能演化机制,并运用所提出方法计算温度-渗流-应力耦合作用下井筒近场围岩的稳定性,模拟得到的岩体破坏过程、应力分布、AE特性及渗流特性变化与现场标定结果有着一致的规律性,初步证明了该数值模型的合理性和有效性。THMD模型以简单的数值模型表征了岩石(体)中热、水、岩及损伤之间复杂的作用关系,为从细观损伤演化揭示宏观岩体温度-渗流-应力耦合破坏机制提供了一种新的数值分析方法。 展开更多
关键词 thm耦合 非均匀性 损伤 数值模拟 破坏过程
下载PDF
开挖损伤区近场模型THM耦合过程的BMT模拟 被引量:4
11
作者 潘鹏志 冯夏庭 周辉 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第12期2532-2540,共9页
以正在进行的大型国际合作项目DECOVALEX-THMC为背景,利用自行开发的弹塑性细胞自动机模拟系统,对开挖损伤区近场模型域进行程序校验(BMT)模拟研究,揭示高放废物从处置开始直至1×106a的演化过程中,裂隙的存在对开挖损伤区力学性能... 以正在进行的大型国际合作项目DECOVALEX-THMC为背景,利用自行开发的弹塑性细胞自动机模拟系统,对开挖损伤区近场模型域进行程序校验(BMT)模拟研究,揭示高放废物从处置开始直至1×106a的演化过程中,裂隙的存在对开挖损伤区力学性能的影响。首先进行的是弹性分析,研究对象包括开挖损伤区近场均质模型和包含复杂裂隙网络的非均质模型域,该裂隙网络是瑞典?sp?硬岩实验室根据裂隙映射得出的真实裂隙网络分布。引入简单的弱化参数表达式,用弱化元胞单元来代表模型中的复杂裂隙网络,以模拟裂隙的软化效应。采用项目指导委员会提供的随时间变化的温度、应力、水流边界条件,模拟地质围岩从开挖、核废物处置、加热100~1×106a的力学演化过程。模拟结果显示,裂隙的存在对应力场、变形场和破坏过程有较大的影响,并将模拟的结果与国际上其他研究小组的模拟结果进行对比,吻合较好,说明该模型和方法的合理性,并可适合于该项目下一步的研究工作。在此基础上,采用弹塑性细胞自动机模拟系统,对裂隙网络模型和均质模型进行弹塑性破坏过程分析,结果表明,由于裂隙的存在,裂隙网络模型的破坏过程更加复杂。 展开更多
关键词 岩石力学 DECOVALEX—thmC 弹塑性细胞自动机 复杂裂隙网络 开挖损伤区 温度一渗流一应力 祸合 破坏过程
下载PDF
基于THM的井壁稳定性分析 被引量:5
12
作者 马海佳 张海军 张冶 《大庆石油学院学报》 CAS 北大核心 2008年第6期50-55,124,共6页
利用流-固-热三场耦合控制方程,根据井壁稳定分析所要研究的对象,对方程做必要的简化,并结合与井壁稳定性分析相适应的边界条件,用有限元法求解方程,探究流-固-热三场耦合作用下的井壁稳定性问题,为解决油气井井壁稳定问题提供理论依据... 利用流-固-热三场耦合控制方程,根据井壁稳定分析所要研究的对象,对方程做必要的简化,并结合与井壁稳定性分析相适应的边界条件,用有限元法求解方程,探究流-固-热三场耦合作用下的井壁稳定性问题,为解决油气井井壁稳定问题提供理论依据.结果表明:考虑三场耦合的条件下,温度变化对井壁稳定的影响程度主要取决于岩石骨架和地层流体的热膨胀系数值及钻井液温度与地层温度差;井壁温度与钻井液温度差值越大,井壁越趋于不稳定. 展开更多
关键词 多孔介质 井壁稳定 热-流-固三场全耦合 thm 数值模拟
下载PDF
THM耦合作用对EGS储层水流阻抗的影响分析
13
作者 王昌龙 王鑫 +1 位作者 鲁进利 孙彦红 《可再生能源》 CAS CSCD 北大核心 2022年第10期1319-1324,共6页
文章基于传热-流动-力学(Thermal-Hydrologic-Mechanical,THM)耦合模型对比分析了不同条件下THM耦合和传热-流动耦合的增强型地热系统(Enhanced Geothermal System,EGS)储层水流阻抗,研究了力学过程对储层水流阻抗的影响。结果显示:在... 文章基于传热-流动-力学(Thermal-Hydrologic-Mechanical,THM)耦合模型对比分析了不同条件下THM耦合和传热-流动耦合的增强型地热系统(Enhanced Geothermal System,EGS)储层水流阻抗,研究了力学过程对储层水流阻抗的影响。结果显示:在考虑力学过程后,储层水流阻抗随时间而增大的幅度减小,因而力学过程倾向于降低储层水流阻抗;储层水流阻抗与储层内平均水力传导系数的变化趋势基本是相反的,然而后者不能完全决定储层水流阻抗;在较高地温梯度、较高注入井筒底部压力及较低注入井筒底部温度条件下,力学过程对储层水流阻抗的影响较大。 展开更多
关键词 EGS thm耦合 力学过程 储层水流阻抗
下载PDF
高放废料地质处置中多场耦合作用下的岩石破裂问题 被引量:17
14
作者 唐春安 马天辉 +1 位作者 李连崇 刘红元 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第S2期3932-3938,共7页
综述岩石力学中热-水-力耦合模型的研究进展,认为在热-水-力耦合作用下的岩石(岩体)破裂过程演化将直接影响高放射性废料地质处置库周围围岩的热力学特性、渗流特性和力学稳定性,进而影响高放射性核素在围岩中的迁移规律。通过建立一种... 综述岩石力学中热-水-力耦合模型的研究进展,认为在热-水-力耦合作用下的岩石(岩体)破裂过程演化将直接影响高放射性废料地质处置库周围围岩的热力学特性、渗流特性和力学稳定性,进而影响高放射性核素在围岩中的迁移规律。通过建立一种描述热-水-力耦合条件下岩石破裂演化过程的细观力学模型,来揭示热-水-力耦合条件下宏观岩体结构破坏行为。计算分析结果表明,这种模型对于高放废料地质处置的可靠性分析具有重要的科学价值及现实意义。 展开更多
关键词 岩石力学 热-水-力耦合 高放射性废料 破裂过程 数值模型
下载PDF
地下热-水动力-力学耦合过程数值模拟:以CO_2地质储存为例 被引量:10
15
作者 雷宏武 金光荣 +3 位作者 石岩 李佳琦 王福刚 许天福 《岩土力学》 EI CAS CSCD 北大核心 2014年第8期2415-2425,共11页
在地下流动系统问题的研究中,热-水动力-力学(THM)耦合过程是研究的热点问题。在地下多相非等温数值模拟软件TOUGH2的框架内,基于Biot固结理论和摩尔-库仑破坏判定准则,建立了THM耦合模型;采用积分有限差和有限元联合的空间离散方法,开... 在地下流动系统问题的研究中,热-水动力-力学(THM)耦合过程是研究的热点问题。在地下多相非等温数值模拟软件TOUGH2的框架内,基于Biot固结理论和摩尔-库仑破坏判定准则,建立了THM耦合模型;采用积分有限差和有限元联合的空间离散方法,开发了THM模拟器TOUGH2Biot。该模拟器中热和水动力过程是全耦合,力学过程是部分耦合。通过与解析解的对比,验证了其正确性。基于鄂尔多斯盆地CCS示范工程,采用TOUGH2Biot研究了CO2注入地层后的THM响应。结果显示CO2的注入引起流体压力急剧增加,地层有效应力减小,地表隆起,隆起大小在几十个厘米,同时孔渗增加,利于CO2注入引起的压力上升向外消散。CO2注入最有可能导致剪切破坏的位置位于最大速率注入点上部盖层,其次为靠近地表的位置。 展开更多
关键词 热-水动力-力学耦合过程 BIOT固结理论 CO2地质储存 数值模拟
下载PDF
Numerical analysis of thermal impact on hydro-mechanical properties of clay 被引量:1
16
作者 Xuerui Wang Hua Shao +3 位作者 Jürgen Hesser Chunliang Zhang Wenqing Wang Olaf Kolditz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期405-416,共12页
As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In hi... As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In highly consolidated clayey rocks, thermal effects are particularly significantbecause of their very low permeability and water-saturated state. Thermal impact on the integrity of thegeological barriers is of most importance with regard to the long-term safety of repositories. This studyfocuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using acoupled thermo-mechanical multiphase flow (TH2M) model which is implemented in the finite elementprogramme OpenGeoSys (OGS). The material properties of the numerical model are characterised by atransversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model basedon van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based onFourier's law. In the numerical approaches, special attention has been paid to the thermal expansion ofthree different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity.Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in thepresent model. The model has been applied to simulate a laboratory heating experiment on claystone.The numerical model gives a satisfactory representation of the observed material behaviour in thelaboratory experiment. The comparison of the calculated results with the laboratory findings verifies thatthe simulation with the present numerical model could provide a deeper understanding of the observedeffects. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Radioactive waste disposal Clayey rock Heating experiment Numerical modelling OpenGeoSys(OGS) thermo-hydro-mechanical(thm) coupling Multiphase flow Thermal effect
下载PDF
Numerical simulation of seasonal snow in Tianshan Mountains
17
作者 REN Yan-run ZHANG Yao-nan +3 位作者 HAO Jian-sheng SHEN Yong-ping ZHAO Guo-hui LI Cong 《Journal of Mountain Science》 SCIE CSCD 2021年第2期338-356,共19页
Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environm... Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environment,considerably affect the stability of snow on slopes.Therefore,a hydrothermal model of snow cover and its underlying surfaces must be developed on the basis of meteorological data to predict and help manage avalanches.This study adopted the conceptual model of snow as a porous medium and quantitatively analysed its internal physical processes on the basis of the thermal exchanges amongst its components.The effects of local meteorological factors on snow structure and the redistribution of energy and mass inside the snow cover in the Tianshan Mountains were simulated.Simulation results showed that deformation as a result of overlying snow and sublimation of snow cover at the bottom is the main cause of density variation in the vertical profile of snow cover.Temperature drives water movement in snow.The low-density area of the bottom snow is the result of temperature gradient.The simulation results of the long-term snow internal mass distribution obtained by the method established in this study are highly consistent with the actual observed trend of variation.Such consistency indicates an accurate simulation of the physical characteristics of snow cover in small and microscale metamorphism in the Tianshan Mountains during the stable period. 展开更多
关键词 SNOW Porous medium Heat and mass transfer Phase change thermo-hydro-mechanical(thm)coupling Numerical modelling
下载PDF
DEVELOPMENT AND APPLICATIONS OF THE ELASTO-PLASTIC CELLULAR AUTOMATON 被引量:4
18
作者 Pengzhi Pan Xiating Feng Hui Zhou 《Acta Mechanica Solida Sinica》 SCIE EI 2012年第2期126-143,共18页
The paper presents the advancement and applications of the elasto-plastic cellular automaton (EPCA), a simulator for rock mechanics and rock engineering. The most significant feature of EPCA lies in its 'down-top'... The paper presents the advancement and applications of the elasto-plastic cellular automaton (EPCA), a simulator for rock mechanics and rock engineering. The most significant feature of EPCA lies in its 'down-top' way of dealing with nonlinear behaviors of rocks. The theory, the basic idea and associated developments, including the definition of cellular automaton, the heterogeneous material model, constitutive relations, failure criteria, the post-yield softening scheme, the thermo-hydro-mechanical coupling process, are described. The applications are presented to show the ability of EPCA to model the rock failure process, fluid flow, heat transfer, and the coupled thermo-hydro-mechanical (THM) process etc. 展开更多
关键词 rock failure process elasto-plastic cellular automaton complete stress-strain curves fluid flow heat transfer thermo-hydro-mechanical coupling
原文传递
Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory
19
作者 Min-jie WEN Kui-hua WANG +2 位作者 Wen-bing WU Yun-peng ZHANG Hou-ren XIONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第12期992-1004,共13页
Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous... Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous media.Fractional thermoelastic theory is applied to porous media with imperfect thermal and mechanical contact.The analytical solutions of the dynamic response of the bilayered saturated porous media are obtained in frequency domain.Furthermore,the effects of fractional derivative parameters and thermal contact resistance on the dynamic response of such media are systematically discussed.Results show that the effects of fractional derivative parameters on the dynamic response of bilayered saturated porous media are related to the thermal contact resistance at the interface.With increasing thermal contact resistance,the displacement,pore water pressure,and stress decrease gradually. 展开更多
关键词 Bilayered saturated porous media thermo-hydro-mechanical(thm)coupling dynamic response Fractional thermoelastic theory Thermal contact resistance Elastic wave impedance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部