Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological ...Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological behavior of rock mass. In the paper, based on the fundamental theories of rock mass coupling theory and rheological mechanics, the rheological model for fully coupled thermo-hydro-mechanical analysis for rock mass was set up, and the corresponding constitutive relationship, the conservation equation of mass and the conservation equation of energy were given, and the finite element formulas were derived for coupling analysis of rock mass. During establishing governing equations, rock mass was assumed approximately as macro-equivalent continuum medium. The obtained rheological numerical model for fully coupled thermo-hydro-mechanical analysis can be used for analyzing and predicting the long-term stability of underground caverns and slope engineering under the condition of thermo-hydro-mechanical coupling with rheological deformation.展开更多
In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and ...In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and fully unified coupled thermo-hydro-mechanical model for unsaturated porous media is required to simulate the complex coupling mechanisms involved.Based on modified Darcy's and Fourier's laws,equations of mechanical equilibrium,mass conservation and energy conservation are derived by introducing void ratio and volumetric liquid water content into the model.The newly derived model takes into account the effects of temperature on the dynamic viscosity of liquid water and void ratio,the influence of liquid flow on temperature gradient(thermo-osmosis),the influence on mass and heat conservation equations,and the influence of heat flow on water pressure gradient and thermal convection.The new coupled THM constitutive model is constructed by a finite element program and is used to simulate the coupled behavior of a tunnel during excavation,ventilation and concrete lining stages.Oil and gas engineering,underground disposal of nuclear waste and tunnel engineering may be benefited from the development of the new model.展开更多
As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.B...As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2.展开更多
Geo-energy and geo-engineering applications,such as improved oil recovery(IOR),geologic carbon storage,and enhanced geothermal systems(EGSs),involve coupled thermo-hydro-mechanical(THM)processes that result from fluid...Geo-energy and geo-engineering applications,such as improved oil recovery(IOR),geologic carbon storage,and enhanced geothermal systems(EGSs),involve coupled thermo-hydro-mechanical(THM)processes that result from fluid injection and production.In some cases,reservoirs are highly fractured and the geomechanical response is controlled by fractures.Therefore,fractures should explicitly be included into numerical models to realistically simulate the THM responses of the subsurface.In this study,we perform coupled THM numerical simulations of water injection into naturally fractured reservoirs(NFRs)using CODE_BRIGHT and TOUGH-UDEC codes.CODE_BRIGHT is a finite element method(FEM)code that performs fully coupled THM analysis in geological media and TOUGH-UDEC sequentially solves coupled THM processes by combining a finite volume method(FVM)code that solves nonisothermal multiphase flow(TOUGH2)with a distinct element method(DEM)code that solves the mechanical problem(UDEC).First,we validate the two codes against a semi-analytical solution for water injection into a single deformable fracture considering variable permeability based on the cubic law.Then,we compare simulation results of the two codes in an idealized conceptual model that includes one horizontal fracture and in a more realistic model with multiple fractures.Each code models fractures differently.UDEC calculates fracture deformation from the fracture normal and shear stiffnesses,while CODE_BRIGHT treats fractures as equivalent porous media and uses the equivalent Young’s modulus and Poisson’s ratio of the fracture.Finally,we obtain comparable results of pressure,temperature,stress and displacement distributions and evolutions for the single horizontal fracture model.Despite some similarities,the two codes provide increasingly different results as model complexity increases.These differences highlight the challenging task of accurately modeling coupled THM processes in fractured media given their high nonlinearity.展开更多
One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro- mechanical (THM) coupl...One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro- mechanical (THM) coupled processes associated with an HLW disposal repository. Non-linear coupled equations, which are used to describe the THM coupled process and are suited to saturated-unsaturated porous media, are presented in this paper. A numerical method to solve these equations is put forward, and a finite element code is developed. This code is suited to the plane strain or axis-symmetry problem. Then this code is used to simulate the THM coupled process in the near field of an ideal disposal repository. The temperature vs. time, hydraulic head vs. time and stress vs. time results show that, in this assumed condition, the impact of temperature is very long (over 10 000 a) and the impact of the water head is short (about 90 d). Since the stress is induced by temperature and hydraulic head in this condition, the impact time of stress is the same as that of temperature. The results show that THM coupled processes are very important in the safety analysis of an HLW deep geological disposal repository.展开更多
The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in...The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same.展开更多
As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In hi...As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In highly consolidated clayey rocks, thermal effects are particularly significantbecause of their very low permeability and water-saturated state. Thermal impact on the integrity of thegeological barriers is of most importance with regard to the long-term safety of repositories. This studyfocuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using acoupled thermo-mechanical multiphase flow (TH2M) model which is implemented in the finite elementprogramme OpenGeoSys (OGS). The material properties of the numerical model are characterised by atransversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model basedon van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based onFourier's law. In the numerical approaches, special attention has been paid to the thermal expansion ofthree different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity.Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in thepresent model. The model has been applied to simulate a laboratory heating experiment on claystone.The numerical model gives a satisfactory representation of the observed material behaviour in thelaboratory experiment. The comparison of the calculated results with the laboratory findings verifies thatthe simulation with the present numerical model could provide a deeper understanding of the observedeffects. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
In this paper,a coupled thermo-hydro-mechanical(THM)simulation in a faulted deformable porous medium is presented.This model involves solving the mass conservation,linear momentum balance,and energy balance equations ...In this paper,a coupled thermo-hydro-mechanical(THM)simulation in a faulted deformable porous medium is presented.This model involves solving the mass conservation,linear momentum balance,and energy balance equations which are derived from the Biot’s consolidation theory.Fluid pore pressure,solid displacement,and temperature are chosen as initial variables in these equations,and the finite element method in combination with the interface element is used for spatial discretization of continuous and discontinuities(fault)parts of the medium to solve the equations.The main purpose of this study is providing precise formulations,applicability,and ability of the triple-node zero-thickness interface element in THM modeling of faults.It should be noted that the system of equations is solved using a computer code written in Matlab program.In order to verify the developed method,simulations of index problems such as Mandel’s problem,and coupled modeling of a faulted porous medium and a faulted aquifer are presented.The modeling results obtained from the developed method show a very good agreement with those by other modeling methods,which indicates its accuracy.展开更多
In this paper,the thermo-hydro-mechanical(THM)response of claystone is studied via a series of parametric studies,considering the evolution of mechanical properties and deformation behavior of corroded steel.The numer...In this paper,the thermo-hydro-mechanical(THM)response of claystone is studied via a series of parametric studies,considering the evolution of mechanical properties and deformation behavior of corroded steel.The numerical simulations are performed by using a coupled THM finite element code and two different constitutive models:a visco-elastoplastic model for geological formation and a von Mises type model for steel liner.The mechanical properties and deformation behavior of corroded steel are described in a conceptual model.Finally,a disposal tunnel supported by a steel liner is studied and a series of parametric studies is defined to demonstrate the corrosion effects of steel liner on the THM response of the claystone.The comparison of different numerical calculations exhibits that the volumetric expansion related to corrosion products has an important impact on the stress and displacement fields in the claystone surrounding the disposal tunnel.However,the evolutions of temperature and liquid pressure in the claystone are essentially controlled by its THM properties and independent of the steel corrosion.展开更多
The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal con...The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.展开更多
With the models of stress corrosion and pressure solution, by Yasuhara et al., two computation conditions were designed for a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass: (i) the fr...With the models of stress corrosion and pressure solution, by Yasuhara et al., two computation conditions were designed for a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass: (i) the fracture apertures are changed with the stress corrosion and pressure solution (the porosity of rock matrix is also a function of stress); (ii) the fracture apertures and the porosity of rock matrix are constants. Then the corresponding two-dimensional FEM analyses for the coupled thermohydro-mechanical processes were carried out, and the states of temperatures, rates and magnitudes of aperture closure, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show the followings: The aperture closure rates caused by stress corrosion are almost six orders higher than those caused by pressure solution, and the two kinds of closure rates climb up, then decline, furthermore tend towards stability; the fracture apertures decrease from the original value and tend towards the residual value, and the contact-area ratios of asperities increase also from the original value and tend towards the nominal value; when the effects of stress corrosion and pressure solution are considered, the negative fracture pressures in near field rise very highly; the differences between the magnitudes and distributions of stresses within the rock mass in two calculation cases are very small.展开更多
Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environm...Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environment,considerably affect the stability of snow on slopes.Therefore,a hydrothermal model of snow cover and its underlying surfaces must be developed on the basis of meteorological data to predict and help manage avalanches.This study adopted the conceptual model of snow as a porous medium and quantitatively analysed its internal physical processes on the basis of the thermal exchanges amongst its components.The effects of local meteorological factors on snow structure and the redistribution of energy and mass inside the snow cover in the Tianshan Mountains were simulated.Simulation results showed that deformation as a result of overlying snow and sublimation of snow cover at the bottom is the main cause of density variation in the vertical profile of snow cover.Temperature drives water movement in snow.The low-density area of the bottom snow is the result of temperature gradient.The simulation results of the long-term snow internal mass distribution obtained by the method established in this study are highly consistent with the actual observed trend of variation.Such consistency indicates an accurate simulation of the physical characteristics of snow cover in small and microscale metamorphism in the Tianshan Mountains during the stable period.展开更多
Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous...Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous media.Fractional thermoelastic theory is applied to porous media with imperfect thermal and mechanical contact.The analytical solutions of the dynamic response of the bilayered saturated porous media are obtained in frequency domain.Furthermore,the effects of fractional derivative parameters and thermal contact resistance on the dynamic response of such media are systematically discussed.Results show that the effects of fractional derivative parameters on the dynamic response of bilayered saturated porous media are related to the thermal contact resistance at the interface.With increasing thermal contact resistance,the displacement,pore water pressure,and stress decrease gradually.展开更多
文摘Under the environment of seepage field, stress field and temperature field interaction and influence, the three fields will not only produce coupling effect, but also have deformation with time due to the rheological behavior of rock mass. In the paper, based on the fundamental theories of rock mass coupling theory and rheological mechanics, the rheological model for fully coupled thermo-hydro-mechanical analysis for rock mass was set up, and the corresponding constitutive relationship, the conservation equation of mass and the conservation equation of energy were given, and the finite element formulas were derived for coupling analysis of rock mass. During establishing governing equations, rock mass was assumed approximately as macro-equivalent continuum medium. The obtained rheological numerical model for fully coupled thermo-hydro-mechanical analysis can be used for analyzing and predicting the long-term stability of underground caverns and slope engineering under the condition of thermo-hydro-mechanical coupling with rheological deformation.
基金Supported by the National Natural Science Foundation of China (50579087,50720135906, 50539050)CAS/SAFEA International Partnership Program for Creative Research Teams
文摘In examining potential host rocks for such purposes as the disposal of high-level radioactive wastes,it is important to understand the coupled thermo-hydro-mechanical(THM) behavior of a porous medium.A rigorous and fully unified coupled thermo-hydro-mechanical model for unsaturated porous media is required to simulate the complex coupling mechanisms involved.Based on modified Darcy's and Fourier's laws,equations of mechanical equilibrium,mass conservation and energy conservation are derived by introducing void ratio and volumetric liquid water content into the model.The newly derived model takes into account the effects of temperature on the dynamic viscosity of liquid water and void ratio,the influence of liquid flow on temperature gradient(thermo-osmosis),the influence on mass and heat conservation equations,and the influence of heat flow on water pressure gradient and thermal convection.The new coupled THM constitutive model is constructed by a finite element program and is used to simulate the coupled behavior of a tunnel during excavation,ventilation and concrete lining stages.Oil and gas engineering,underground disposal of nuclear waste and tunnel engineering may be benefited from the development of the new model.
基金funded by the National Natural Science Foundation of China(Grant No.NSFC51374147)the German Society for Petroleum and Coal Science and Technology(Grant No.DGMK680-4)
文摘As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2.
基金financial support received from the“Iran’s Ministry of Science Research and Technology”(PhD students’sabbatical grants)funding from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program through the Starting Grant GEoREST(www.georest.eu)(Grant Agreement No.801809)+1 种基金support by the Korea-EU Joint Research Program of the National Research Foundation of Korea through Grant No.NRF2015K1A3A7A03074226funded by the Korean Government’s Ministry of Science and Information and Communication Technology(ICT)in the framework of the European Union’s Horizon 2020 Research and Innovation Program(Grant No.691728)。
文摘Geo-energy and geo-engineering applications,such as improved oil recovery(IOR),geologic carbon storage,and enhanced geothermal systems(EGSs),involve coupled thermo-hydro-mechanical(THM)processes that result from fluid injection and production.In some cases,reservoirs are highly fractured and the geomechanical response is controlled by fractures.Therefore,fractures should explicitly be included into numerical models to realistically simulate the THM responses of the subsurface.In this study,we perform coupled THM numerical simulations of water injection into naturally fractured reservoirs(NFRs)using CODE_BRIGHT and TOUGH-UDEC codes.CODE_BRIGHT is a finite element method(FEM)code that performs fully coupled THM analysis in geological media and TOUGH-UDEC sequentially solves coupled THM processes by combining a finite volume method(FVM)code that solves nonisothermal multiphase flow(TOUGH2)with a distinct element method(DEM)code that solves the mechanical problem(UDEC).First,we validate the two codes against a semi-analytical solution for water injection into a single deformable fracture considering variable permeability based on the cubic law.Then,we compare simulation results of the two codes in an idealized conceptual model that includes one horizontal fracture and in a more realistic model with multiple fractures.Each code models fractures differently.UDEC calculates fracture deformation from the fracture normal and shear stiffnesses,while CODE_BRIGHT treats fractures as equivalent porous media and uses the equivalent Young’s modulus and Poisson’s ratio of the fracture.Finally,we obtain comparable results of pressure,temperature,stress and displacement distributions and evolutions for the single horizontal fracture model.Despite some similarities,the two codes provide increasingly different results as model complexity increases.These differences highlight the challenging task of accurately modeling coupled THM processes in fractured media given their high nonlinearity.
文摘One of the most suitable ways under study for the disposal of high-level radioactive waste (HLW) is isolation in deep geological repositories. It is very important to research the thermo-hydro- mechanical (THM) coupled processes associated with an HLW disposal repository. Non-linear coupled equations, which are used to describe the THM coupled process and are suited to saturated-unsaturated porous media, are presented in this paper. A numerical method to solve these equations is put forward, and a finite element code is developed. This code is suited to the plane strain or axis-symmetry problem. Then this code is used to simulate the THM coupled process in the near field of an ideal disposal repository. The temperature vs. time, hydraulic head vs. time and stress vs. time results show that, in this assumed condition, the impact of temperature is very long (over 10 000 a) and the impact of the water head is short (about 90 d). Since the stress is induced by temperature and hydraulic head in this condition, the impact time of stress is the same as that of temperature. The results show that THM coupled processes are very important in the safety analysis of an HLW deep geological disposal repository.
基金Project(2010CB732101) supported by the National Basic Research Program of ChinaProject(51079145) supported by the National Natural Science Foundation of ChinaProject(2009BAK53B03) supported by the National Key Technology R&D Program of China
文摘The model of pressure solution for granular aggregate was introduced into the FEM code for analysis of thermo-hydro- mechanical (T-H-M) coupling in porous medium. Aiming at a hypothetical nuclear waste repository in an unsaturated quartz rock mass, two computation conditions were designed: 1) the porosity and the permeability of rock mass are fimctions of pressure solution; 2) the porosity and the permeability are constants. Then the corresponding numerical simulations for a disposal period of 4 a were carried out, and the states of temperatures, porosities and permeabilities, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show that at the end of the calculation in Case 1, pressure solution makes the porosities and the permeabilities decrease to 10%-45% and 0.05%-1.4% of their initial values, respectively. Under the action of the release heat of nuclear waste, the negative pore pressures both in Case 1 and Case 2 are 1.2-1.4 and 1.01-l.06 times of the initial values, respectively. So, the former represents an obvious effect of pressure solution. The magnitudes and distributions of stresses within the rock mass in the two calculation cases are the same.
基金supported by BMWi (Bundesministerium für Wirtschaft und Energie,Berlin)
文摘As is known, high-level radioactive waste (HLW) is commonly heat-emitting. Heat output from HLWwilldissipate through the surrounding rocks and induce complex thermo-hydro-mechanical-chemical(THMC) processes. In highly consolidated clayey rocks, thermal effects are particularly significantbecause of their very low permeability and water-saturated state. Thermal impact on the integrity of thegeological barriers is of most importance with regard to the long-term safety of repositories. This studyfocuses on numerical analysis of thermal effects on hydro-mechanical properties of clayey rock using acoupled thermo-mechanical multiphase flow (TH2M) model which is implemented in the finite elementprogramme OpenGeoSys (OGS). The material properties of the numerical model are characterised by atransversal isotropic elastic model based on Hooke's law, a non-isothermal multiphase flow model basedon van Genuchten function and Darcy's law, and a transversal isotropic heat transport model based onFourier's law. In the numerical approaches, special attention has been paid to the thermal expansion ofthree different phases: gas, fluid and solid, which could induce changes in pore pressure and porosity.Furthermore, the strong swelling and shrinkage behaviours of clayey material are also considered in thepresent model. The model has been applied to simulate a laboratory heating experiment on claystone.The numerical model gives a satisfactory representation of the observed material behaviour in thelaboratory experiment. The comparison of the calculated results with the laboratory findings verifies thatthe simulation with the present numerical model could provide a deeper understanding of the observedeffects. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘In this paper,a coupled thermo-hydro-mechanical(THM)simulation in a faulted deformable porous medium is presented.This model involves solving the mass conservation,linear momentum balance,and energy balance equations which are derived from the Biot’s consolidation theory.Fluid pore pressure,solid displacement,and temperature are chosen as initial variables in these equations,and the finite element method in combination with the interface element is used for spatial discretization of continuous and discontinuities(fault)parts of the medium to solve the equations.The main purpose of this study is providing precise formulations,applicability,and ability of the triple-node zero-thickness interface element in THM modeling of faults.It should be noted that the system of equations is solved using a computer code written in Matlab program.In order to verify the developed method,simulations of index problems such as Mandel’s problem,and coupled modeling of a faulted porous medium and a faulted aquifer are presented.The modeling results obtained from the developed method show a very good agreement with those by other modeling methods,which indicates its accuracy.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51609081)
文摘In this paper,the thermo-hydro-mechanical(THM)response of claystone is studied via a series of parametric studies,considering the evolution of mechanical properties and deformation behavior of corroded steel.The numerical simulations are performed by using a coupled THM finite element code and two different constitutive models:a visco-elastoplastic model for geological formation and a von Mises type model for steel liner.The mechanical properties and deformation behavior of corroded steel are described in a conceptual model.Finally,a disposal tunnel supported by a steel liner is studied and a series of parametric studies is defined to demonstrate the corrosion effects of steel liner on the THM response of the claystone.The comparison of different numerical calculations exhibits that the volumetric expansion related to corrosion products has an important impact on the stress and displacement fields in the claystone surrounding the disposal tunnel.However,the evolutions of temperature and liquid pressure in the claystone are essentially controlled by its THM properties and independent of the steel corrosion.
基金financed and supported by the German research institute "Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) mbH"
文摘The main objective of this paper is to investigate and analyse the thermo-hydro-mechanical(THM) coupling phenomena and their influences on the repository safety.In this paper,the high-level waste(HLW) disposal concept in drifts in clay formation with backfilled bentonite buffer is represented numerically using the CODE BRIGHT developed by the Technical University of Catalonia in Barcelona.The parameters of clay and bentonite used in the simulation are determined by laboratory and in situ experiments.The calculation results are presented to show the hydro-mechanical(HM) processes during the operation phase and the THM processes in the after-closure phase.According to the simulation results,the most probable critical processes for the disposal project have been represented and analyzed.The work also provides an input for additional development regarding the design,assessment and validation of the HLW disposal concept.
基金supported by the National Key Basic Research and Development Program of China ("973"Project) (Grant No. 2010CB732101)the National Natural Science Foundation of China (Grant No. 51079145)
文摘With the models of stress corrosion and pressure solution, by Yasuhara et al., two computation conditions were designed for a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass: (i) the fracture apertures are changed with the stress corrosion and pressure solution (the porosity of rock matrix is also a function of stress); (ii) the fracture apertures and the porosity of rock matrix are constants. Then the corresponding two-dimensional FEM analyses for the coupled thermohydro-mechanical processes were carried out, and the states of temperatures, rates and magnitudes of aperture closure, pore pressures, flow velocities and stresses in the rock mass were investigated. The results show the followings: The aperture closure rates caused by stress corrosion are almost six orders higher than those caused by pressure solution, and the two kinds of closure rates climb up, then decline, furthermore tend towards stability; the fracture apertures decrease from the original value and tend towards the residual value, and the contact-area ratios of asperities increase also from the original value and tend towards the nominal value; when the effects of stress corrosion and pressure solution are considered, the negative fracture pressures in near field rise very highly; the differences between the magnitudes and distributions of stresses within the rock mass in two calculation cases are very small.
基金supported by the 13th Five-year Informatization Plan of the Chinese Academy of Sciences,Grant No.XXH13506 and XXH13505-220Data sharing fundamental program for Construction of the National Science Technology Infrastructure Platform(Grant No.Y719H71006)。
文摘Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environment,considerably affect the stability of snow on slopes.Therefore,a hydrothermal model of snow cover and its underlying surfaces must be developed on the basis of meteorological data to predict and help manage avalanches.This study adopted the conceptual model of snow as a porous medium and quantitatively analysed its internal physical processes on the basis of the thermal exchanges amongst its components.The effects of local meteorological factors on snow structure and the redistribution of energy and mass inside the snow cover in the Tianshan Mountains were simulated.Simulation results showed that deformation as a result of overlying snow and sublimation of snow cover at the bottom is the main cause of density variation in the vertical profile of snow cover.Temperature drives water movement in snow.The low-density area of the bottom snow is the result of temperature gradient.The simulation results of the long-term snow internal mass distribution obtained by the method established in this study are highly consistent with the actual observed trend of variation.Such consistency indicates an accurate simulation of the physical characteristics of snow cover in small and microscale metamorphism in the Tianshan Mountains during the stable period.
基金Project supported by the National Natural Science Foundation of China(Nos.52108347 and 51779217)the Primary Research and Development Plan of Zhejiang Province(Nos.2019C03120 and 2020C01147),China。
文摘Considering the thermal contact resistance and elastic wave impedance at the interface,in this paper we theoretically investigate the thermo-hydro-mechanical(THM)coupling dynamic response of bilayered saturated porous media.Fractional thermoelastic theory is applied to porous media with imperfect thermal and mechanical contact.The analytical solutions of the dynamic response of the bilayered saturated porous media are obtained in frequency domain.Furthermore,the effects of fractional derivative parameters and thermal contact resistance on the dynamic response of such media are systematically discussed.Results show that the effects of fractional derivative parameters on the dynamic response of bilayered saturated porous media are related to the thermal contact resistance at the interface.With increasing thermal contact resistance,the displacement,pore water pressure,and stress decrease gradually.