期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Virtually coupled train set control subject to space-time separation:A distributed economic MPC approach with emergency braking configuration
1
作者 Xiaolin Luo Tao Tang +1 位作者 Le Wang Hongjie Liu 《High-Speed Railway》 2024年第3期143-152,共10页
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula... The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches. 展开更多
关键词 Virtually coupled train set Space-time separation Economic model predictive control Distributed model predictive control Emergency braking configuration
下载PDF
Dynamic performance of heavy-haul combined train applying emergency braking on straight line 被引量:5
2
作者 刘鹏飞 王开云 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1898-1908,共11页
A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interaction... A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes. 展开更多
关键词 heavy-haul train longitudinal impulse vehicle–track coupled dynamics emergency braking
下载PDF
Can coordination variability identify performance factors and skill level in competitive sport? The case of race walking 被引量:2
3
作者 Dario Cazzola Gaspare Pavei Ezio Preatoni 《Journal of Sport and Health Science》 SCIE 2016年第1期35-43,共9页
Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are... Background:Marginal changes in the execution of competitive sports movements can represent a significant change for performance success.However,such differences may emerge only at certain execution intensities and are not easily detectable through conventional biomechanical techniques.This study aimed to investigate if and how competition standard and progression speed affect race walking kinematics from both a conventional and a coordination variability perspective.Methods:Fifteen experienced athletes divided into three groups(elite,international,and national) were studied while race walking on a treadmill at two different speeds(12.0 and 15.5 km/h).Basic gait parameters,the angular displacement of the pelvis and lower limbs,and the variability in continuous relative phase between six different joint couplings were analyzed.Results:Most of the spatio-temporal,kinematic,and coordination variability measures proved sensitive to the change in speed.Conversely,non-linear dynamics measures highlighted differences between athletes of different competition standard when conventional analytical tools were not able to discriminate between different skill levels.Continuous relative phase variability was higher for national level athletes than international and elite in two couplings(pelvis obliquity—hip flex/extension and pelvis rotation—ankle dorsi/plantarflexion) and gait phases(early stance for the first coupling,propulsive phase for the second) that are deemed fundamental for correct technique and performance.Conclusion:Measures of coordination variability showed to be a more sensitive tool for the fine detection of skill-dependent factors in competitive race walking,and showed good potential for being integrated in the assessment and monitoring of sports motor abilities. 展开更多
关键词 Biomechanics Gait Joint coupling Motor control Sports technique training
下载PDF
A Micro-coupling for Micro Mechanical Systems 被引量:1
4
作者 LI Wei ZHOU Zhixiong +1 位作者 ZHANG Bi XIAO Yunya 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期571-578,共8页
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits t... The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy(SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect(TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N · mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature(15 ℃) and unclamping action below –5 ℃. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and balanced motions. 展开更多
关键词 coupling clamp shape memory alloy thermo-mechanical training micro-spindle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部