This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plas...This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plasma to calculate the temperature and flow field of the reactor as well as the generator. The algorithm is based on the solutions of the two-dimensional continuity, momentum, and energy equations in term of vorticity, stream function and enthalpy. An upwind finite-difference scheme was adopted to solve those equations with appropriate boundary conditions. The computed results show that there is a flat region with little parameter change in the reactor, that the diameter of the region is not much larger than that of the generator and that a deep change of parameter exists in the outer side of the region.展开更多
Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidi...Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.展开更多
A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model i...A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.展开更多
According to the law of conservation in the state of turbulent flow, the differential equation describing the airflow temperature distribution in drifting tunnel is derived, By theoretical analysis and field measureme...According to the law of conservation in the state of turbulent flow, the differential equation describing the airflow temperature distribution in drifting tunnel is derived, By theoretical analysis and field measurement of the airflow and thermal process in mine, theoretical analysis and systematic flow are developed. By PHONENICS program, the numerical simulation is processed, and the changing rule of airflow temperature with various parameters in drifting tunnel is derived. The airflow temperature in drifting tunnel decreases as the airflow velocity increases in a way of negative power exponent, and elevates linearly as the temperature of the incoming airflow elevates.展开更多
The annular diffuser is an expansion area, which, despite its simple structure, is very important in some engineering and thermal applications. In the present research, numerical simulations were performed to investig...The annular diffuser is an expansion area, which, despite its simple structure, is very important in some engineering and thermal applications. In the present research, numerical simulations were performed to investigate the temperature field and flow structure characteristics in an annular diffuser. The hub of the annular diffuser consisted of a straight semi-dimpled tube SSDT. Three different diffuser wall angles (α) 1.8°, 3.6° and 5.4° with inlet Reynolds number 1.5 × 104?were studied in details with air as a working fluid. The computational fluid dynamics CFD was used to simulate the model in a turbulent flow. The standard k-ε turbulence model was used to complete the governing equations. The numerical results, mainly the temperature distribution, pressure drop and velocity distribution for the airflow in the annular diffuser fitted with SSDT for different diffuser wall angles α were obtained and compared. It was observed that as the wall diffuser angle α increases, the enhancement of the temperature distribution and the velocity distribution decrease while the pressure drop rate increases. The maximum temperature distribution and velocity distribution were completed by diffuser wall angle α1 = 1.8° whereas, the highest pressure drop achieved by diffuser wall angle α3 = 5.4°.展开更多
Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the ...Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.展开更多
Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included...Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included the casting roller shell. At the same time, Galerkin method was adopted to solve the coupling model. The fluid field and temperature field of aluminum melt in casting zone, the temperature field and thermal stress field of roller shells were simulated by the coupling model. When the casting velocity is 7m/min, and the thickness of strip is 2mm, the circumfluent area comes into being in the casting zone, and the mushy zone dominates the casting zone, while the temperature of melt decreases rapidly as it approaches the rollers. The temperature of the roller shell varies periodically with the rotation of roller, and reaches the highest temperature in the casting zone, while the temperature of roller shell decreases gradually as it leaves the casting zone. The difference of thermal stress between the inner surface and outer surface of the roller shell is very large, and the outer surface suffers tensile-compressive stress.展开更多
文摘This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plasma to calculate the temperature and flow field of the reactor as well as the generator. The algorithm is based on the solutions of the two-dimensional continuity, momentum, and energy equations in term of vorticity, stream function and enthalpy. An upwind finite-difference scheme was adopted to solve those equations with appropriate boundary conditions. The computed results show that there is a flat region with little parameter change in the reactor, that the diameter of the region is not much larger than that of the generator and that a deep change of parameter exists in the outer side of the region.
文摘Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality.
文摘A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.
文摘According to the law of conservation in the state of turbulent flow, the differential equation describing the airflow temperature distribution in drifting tunnel is derived, By theoretical analysis and field measurement of the airflow and thermal process in mine, theoretical analysis and systematic flow are developed. By PHONENICS program, the numerical simulation is processed, and the changing rule of airflow temperature with various parameters in drifting tunnel is derived. The airflow temperature in drifting tunnel decreases as the airflow velocity increases in a way of negative power exponent, and elevates linearly as the temperature of the incoming airflow elevates.
文摘The annular diffuser is an expansion area, which, despite its simple structure, is very important in some engineering and thermal applications. In the present research, numerical simulations were performed to investigate the temperature field and flow structure characteristics in an annular diffuser. The hub of the annular diffuser consisted of a straight semi-dimpled tube SSDT. Three different diffuser wall angles (α) 1.8°, 3.6° and 5.4° with inlet Reynolds number 1.5 × 104?were studied in details with air as a working fluid. The computational fluid dynamics CFD was used to simulate the model in a turbulent flow. The standard k-ε turbulence model was used to complete the governing equations. The numerical results, mainly the temperature distribution, pressure drop and velocity distribution for the airflow in the annular diffuser fitted with SSDT for different diffuser wall angles α were obtained and compared. It was observed that as the wall diffuser angle α increases, the enhancement of the temperature distribution and the velocity distribution decrease while the pressure drop rate increases. The maximum temperature distribution and velocity distribution were completed by diffuser wall angle α1 = 1.8° whereas, the highest pressure drop achieved by diffuser wall angle α3 = 5.4°.
基金supported by National Key Research Development Planning Project of China (2004CB619108).
文摘Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.
文摘Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included the casting roller shell. At the same time, Galerkin method was adopted to solve the coupling model. The fluid field and temperature field of aluminum melt in casting zone, the temperature field and thermal stress field of roller shells were simulated by the coupling model. When the casting velocity is 7m/min, and the thickness of strip is 2mm, the circumfluent area comes into being in the casting zone, and the mushy zone dominates the casting zone, while the temperature of melt decreases rapidly as it approaches the rollers. The temperature of the roller shell varies periodically with the rotation of roller, and reaches the highest temperature in the casting zone, while the temperature of roller shell decreases gradually as it leaves the casting zone. The difference of thermal stress between the inner surface and outer surface of the roller shell is very large, and the outer surface suffers tensile-compressive stress.