Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow...Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow in preferential pathways is characterized by localization and spontaneous behavior,which is challenging to simulate in numerical models due to strong hydro-mechanical coupling.To analyze a laboratory experiment in the framework of the DECOVALEX-2023 project,this study introduced a new approach of combining continuous modelling methods with spatial material properties derived from material heterogeneities and experimental observations.The proposed model utilized hydro-mechanical spatial distributions,namely Young’s modulus and gas entry pressure,and elastoplasticity combined with a linear swelling model.A conceptual strain-dependent permeability approach simulated dilatancycontrolled gas flow based on hydro-mechanical coupling.To test the effectiveness of the presented approach,a gas injection test in a compacted,saturated bentonite sample was simulated using the opensource code OpenGeoSys 5.8 and compared with experimental observations.The presented methodology is capable of simulating localized gas flow in preferential pathways.The spatial distributions of Young’s modulus and gas entry pressure affect the swelling pressure,relative permeability and,in combination with the strain-dependent permeability model,also the intrinsic permeability.展开更多
This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discret...This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions.展开更多
In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migr...In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.展开更多
Hydraulic fracturing is a key technology for the development of unconventional hydrocarbon resources.The proppant placement morphology determines the fracture conductivity,thus affecting the reservoir stimulation effe...Hydraulic fracturing is a key technology for the development of unconventional hydrocarbon resources.The proppant placement morphology determines the fracture conductivity,thus affecting the reservoir stimulation effect.In this paper,the proppant migration and placement within complex fractures was studied by considering the fracture wall roughness through computational fluid mechanics-discrete element method(CFD-DEM)in numerical simulation,which is a key approach to study the proppant migration and placement.The results show that the proppant placement non-uniformity,proppant migration capacity,and proppant volume filled in the far-end and the secondary branched fracture are enhanced within the rough fracture compared with those within smooth fractures.The proppant migration capacity is increased within the fracture at low inclination angles(<60°)and low approach angles(<90°),and the proppant placement area is larger in the inclined fracture than that in the vertical fracture.The rise of injection rate and fracturing fluid viscosity causes more proppants migrate to far-end or secondary fractures,resulting in a non-proppant area within the near-wellbore fracture.An increase by 1.3 times in the injection rate and 3 times in the fracturing fluid viscosity leads to a decrease by 26.6%and 27%,respectively,in the proppant placement area within the near-wellbore fracture.The staged injection with small size proppants followed by large size proppants increases the proppant placement area in the primary fracture by 13%-26%,and that with large size proppants followed by small size proppants increases the proppant placement area by 19%-25%,which is due to that the latter method facilitates filling of the secondary branched fracture.The injection location mainly affects the proppant filling degree within the near-wellbore fractures.Compared with the upper injection,the middle and lower injection is not beneficial to filling of proppants within the near-wellbore fracture.展开更多
Estrogens play important roles in the development and progression of multiple tumor types.Accumulating evidence points to the significance of estrogen action not only in tumors of hormonally regulated tissues such as ...Estrogens play important roles in the development and progression of multiple tumor types.Accumulating evidence points to the significance of estrogen action not only in tumors of hormonally regulated tissues such as the breast,endometrium and ovary,but also in the development of colorectal cancer(CRC).The effects of estrogens in physiological and pathophysiological conditions are mediated by the nuclear estrogen receptorsαandβ,as well as the membranebound G protein-coupled estrogen receptor(GPER).The roles of GPER in CRC development and progression,however,remain poorly understood.Studies on the functions of GPER in the colon have shown that this estrogen receptor regulates colonic motility as well as immune responses in CRC-associated diseases,such as Crohn’s disease and ulcerative colitis.GPER is also involved in cell cycle regulation,endoplasmic reticulum stress,proliferation,apoptosis,vascularization,cell migration,and the regulation of fatty acid and estrogen metabolism in CRC cells.Thus,multiple lines of evidence suggest that GPER may play an important role in colorectal carcinogenesis.In this review,we present the current state of knowledge regarding the contribution of GPER to colon function and CRC.展开更多
BACKGROUND Gastric cancer(GC)has become a serious threat to people's health.Accumulative evidence reveals that dysregulation of numerous microRNAs(miRNAs)has been found during malignant formation.So far,the role o...BACKGROUND Gastric cancer(GC)has become a serious threat to people's health.Accumulative evidence reveals that dysregulation of numerous microRNAs(miRNAs)has been found during malignant formation.So far,the role of microRNA-760(miR-760)in the development of GC is largely unknown.AIM To measure the expression level of miR-760 in GC and investigate its role in gastric tumorigenesis.METHODS Real-time quantitative polymerase chain reaction and Western blot analysis were used to measure the expression of miR-760 and G-protein-coupled receptor kinase interacting protein-1(GIT1).Cell growth was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)and cell colony formation assays.Apoptosis was assessed by flow cytometric analysis.The relationship between miR-760 and GIT1 was verified by luciferase reporter assay.RESULTS The results showed that the expression of miR-760 was decreased in GC and associated with poor clinical outcomes in GC patients.Furthermore,miR-760 restrained cell proliferation and cell colony formation and induced apoptosis in GC cells.In addition,miR-760 directly targeted GIT1 and negatively regulated its expression in GC.GIT1 was upregulated in GC and predicted a worse prognosis in GC patients.We also found that upregulation of GIT1 weakened the inhibitory CONCLUSION In conclusion,miR-760 targets GIT1 to inhibit cell growth and promote apoptosis in GC cells.Our data demonstrate that miR-760 may be a potential target for the treatment of GC.展开更多
A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents...A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.展开更多
基金This research was conducted within the DECOVALEX-2023 projectDECOVALEX is an international research project comprising participants from industry,government,and academia,focusing on development of understanding,models and codes in complex coupled problems in sub-surface geological and engineering applications.DECOVALEX-2023 is the current phase of the project.The authors appreciate the DECOVALEX-2023 Funding Organisations Andra,BASE,BGE,BGR,CAS,CNSC,COVRA,US DOE,ENRESA,ENSI,JAEA,KAERI,NWMO,RWM,SÚRAO,SSM and Taipower for their financial and technical support of the work described in this paper.The statements made in the paper are,however,solely those of the authors and do not necessarily reflect those of the Funding Organisations.This work was further supported by the German Federal Ministry for Economic Affairs and Climate Action(BMWK).
文摘Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow in preferential pathways is characterized by localization and spontaneous behavior,which is challenging to simulate in numerical models due to strong hydro-mechanical coupling.To analyze a laboratory experiment in the framework of the DECOVALEX-2023 project,this study introduced a new approach of combining continuous modelling methods with spatial material properties derived from material heterogeneities and experimental observations.The proposed model utilized hydro-mechanical spatial distributions,namely Young’s modulus and gas entry pressure,and elastoplasticity combined with a linear swelling model.A conceptual strain-dependent permeability approach simulated dilatancycontrolled gas flow based on hydro-mechanical coupling.To test the effectiveness of the presented approach,a gas injection test in a compacted,saturated bentonite sample was simulated using the opensource code OpenGeoSys 5.8 and compared with experimental observations.The presented methodology is capable of simulating localized gas flow in preferential pathways.The spatial distributions of Young’s modulus and gas entry pressure affect the swelling pressure,relative permeability and,in combination with the strain-dependent permeability model,also the intrinsic permeability.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)Discovery Grants 341275,NSERC CRDPJ 543894-19,and NSERC/Energi Simulation Industrial Research Chair programfunding he received from Lassonde International Graduate Scholarship in Mining at the University of Toronto+1 种基金supported by the FCE Start-up Fund for New Recruits at the Hong Kong Polytechnic University (P0034042)the Early Career Scheme and the General Research Fund Scheme of the Research Grants Council of the Hong Kong SAR,China (Project Nos.PolyU 25220021 and PolyU 15227222).
文摘This paper presents the development of a coupled modeling approach to simulate cryogenic thermo-hydro-mechanical(THM)processes associated with a freezing medium,which is then implemented in the combined finite-discrete element method code(FDEM)for multi-physics simulation.The governing equations are deduced based on energy and mass conservation,and static equilibrium equations,considering water/ice phase change,where the strong couplings between multi-fields are supplemented by critical coupling parameters(e.g.unfrozen water content,permeability,and thermal conductivity).The proposed model is validated against laboratory and field experiments.Results show that the cryogenic THM model can well predict the evolution of strongly coupled processes observed in frozen media(e.g.heat transfer,water migration,and frost heave deformation),while also capturing,as emergent properties of the model,important phenomena(e.g.latent heat,cryogenic suction,ice expansion and distinct three-zone distribution)caused by water/ice phase change at laboratory and field scales,which are difficult to be all revealed by existing THM models.The novel modeling framework presents a gateway to further understanding and predicting the multi-physical coupling behavior of frozen media in cold regions.
基金supported by National Natural Science Foundation of China(Nos.41904101,41774133)Natural Science Foundation of Shandong Province(ZR2019QD004)+1 种基金Fundamental Research Funds for the Central Universities(No.19CX02010A)the Open Funds of SINOPEC Key Laboratory of Geophysics(Nos.wtyjy-wx2019-01-03,wtyjywx2018-01-06)
文摘In marine seismic exploration,ocean bottom cable technology can record multicomponent seismic data for multiparameter inversion and imaging.This study proposes an elastic multiparameter lease-squares reverse time migration based on the ocean bottom cable technology.Herein,the wavefield continuation operators are mixed equations:the acoustic wave equations are used to calculate seismic wave propagation in the seawater medium,whereas in the solid media below the seabed,the wavefields are obtained by P-and S-wave separated vector elastic wave equations.At the seabed interface,acoustic–elastic coupling control equations are used to combine the two types of equations.P-and S-wave separated elastic migration operators,demigration operators,and gradient equations are derived to realize the elastic least-squares reverse time migration based on the P-and S-wave mode separation.The model tests verify that the proposed method can obtain high-quality images in both the P-and S-velocity components.In comparison with the traditional elastic least-squares reverse time migration method,the proposed method can readily suppress imaging crosstalk noise from multiparameter coupling.
基金financial support of the National Natural Science Foundation of China(Grant No.52074332)express their gratitude to project ZR2020YQ36 supported by Shandong Provincial Science Fund for Excellent Young Scholars。
文摘Hydraulic fracturing is a key technology for the development of unconventional hydrocarbon resources.The proppant placement morphology determines the fracture conductivity,thus affecting the reservoir stimulation effect.In this paper,the proppant migration and placement within complex fractures was studied by considering the fracture wall roughness through computational fluid mechanics-discrete element method(CFD-DEM)in numerical simulation,which is a key approach to study the proppant migration and placement.The results show that the proppant placement non-uniformity,proppant migration capacity,and proppant volume filled in the far-end and the secondary branched fracture are enhanced within the rough fracture compared with those within smooth fractures.The proppant migration capacity is increased within the fracture at low inclination angles(<60°)and low approach angles(<90°),and the proppant placement area is larger in the inclined fracture than that in the vertical fracture.The rise of injection rate and fracturing fluid viscosity causes more proppants migrate to far-end or secondary fractures,resulting in a non-proppant area within the near-wellbore fracture.An increase by 1.3 times in the injection rate and 3 times in the fracturing fluid viscosity leads to a decrease by 26.6%and 27%,respectively,in the proppant placement area within the near-wellbore fracture.The staged injection with small size proppants followed by large size proppants increases the proppant placement area in the primary fracture by 13%-26%,and that with large size proppants followed by small size proppants increases the proppant placement area by 19%-25%,which is due to that the latter method facilitates filling of the secondary branched fracture.The injection location mainly affects the proppant filling degree within the near-wellbore fractures.Compared with the upper injection,the middle and lower injection is not beneficial to filling of proppants within the near-wellbore fracture.
基金Supported by grants from the National Science Centre,Poland(2017/24/T/NZ5/00045 and2015/17/N/NZ5/00336 to Damian Jacenik)the U.S.National Institutes of Health(NIH R01CA163890 and CA194496 to Eric R.Prossnitz+3 种基金 R01 CA207051 to Ellen J.Beswick)the UNM Comprehensive Cancer Center(P30 CA118100)the Autophagy,Inflammation and Metabolism Center of Biomedical Research Excellence(P20 GM121176)Dialysis Clinic,Inc.(to Eric R.Prossnitz)
文摘Estrogens play important roles in the development and progression of multiple tumor types.Accumulating evidence points to the significance of estrogen action not only in tumors of hormonally regulated tissues such as the breast,endometrium and ovary,but also in the development of colorectal cancer(CRC).The effects of estrogens in physiological and pathophysiological conditions are mediated by the nuclear estrogen receptorsαandβ,as well as the membranebound G protein-coupled estrogen receptor(GPER).The roles of GPER in CRC development and progression,however,remain poorly understood.Studies on the functions of GPER in the colon have shown that this estrogen receptor regulates colonic motility as well as immune responses in CRC-associated diseases,such as Crohn’s disease and ulcerative colitis.GPER is also involved in cell cycle regulation,endoplasmic reticulum stress,proliferation,apoptosis,vascularization,cell migration,and the regulation of fatty acid and estrogen metabolism in CRC cells.Thus,multiple lines of evidence suggest that GPER may play an important role in colorectal carcinogenesis.In this review,we present the current state of knowledge regarding the contribution of GPER to colon function and CRC.
文摘BACKGROUND Gastric cancer(GC)has become a serious threat to people's health.Accumulative evidence reveals that dysregulation of numerous microRNAs(miRNAs)has been found during malignant formation.So far,the role of microRNA-760(miR-760)in the development of GC is largely unknown.AIM To measure the expression level of miR-760 in GC and investigate its role in gastric tumorigenesis.METHODS Real-time quantitative polymerase chain reaction and Western blot analysis were used to measure the expression of miR-760 and G-protein-coupled receptor kinase interacting protein-1(GIT1).Cell growth was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)and cell colony formation assays.Apoptosis was assessed by flow cytometric analysis.The relationship between miR-760 and GIT1 was verified by luciferase reporter assay.RESULTS The results showed that the expression of miR-760 was decreased in GC and associated with poor clinical outcomes in GC patients.Furthermore,miR-760 restrained cell proliferation and cell colony formation and induced apoptosis in GC cells.In addition,miR-760 directly targeted GIT1 and negatively regulated its expression in GC.GIT1 was upregulated in GC and predicted a worse prognosis in GC patients.We also found that upregulation of GIT1 weakened the inhibitory CONCLUSION In conclusion,miR-760 targets GIT1 to inhibit cell growth and promote apoptosis in GC cells.Our data demonstrate that miR-760 may be a potential target for the treatment of GC.
基金This research was supported by the National Key Research and Development Program of China(Grant No.2018YFC0809605)the National Natural Science Foundation of China(Grant Nos.41230630,41601074)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-DQC015)Science and Technology Plan Project of Tibet(XZ201801-GB-07).
文摘A series of saline soil-related problems,including salt expansion and collapse,frost heave and thaw settlement,threaten the safety of the road traffic and the built infrastructure in cold regions.This article presents a comprehensive review of the physical and mechanical properties,salt migration mechanisms of saline soil in cold environment,and the countermeasures in practice.It is organized as follows:(1)The basic physical characteristics;(2)The strength criteria and constitutive models;(3)Water and salt migration characteristics and mechanisms;and(4)Countermeasures of frost heave and salt expansion.The review provides a holistic perspective for recent progress in the strength characteristics,mechanisms of frost heave and salt expansion,engineering countermeasures of saline soil in cold regions.Future research is proposed on issues such as the effects of salt erosion on concrete and salt corrosion of metal under the joint action of evaporation and freeze-thaw cycles.