期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Theoretical and Numerical Studies on the Coupling Deformation of Global Lateral Buckling and Walking of Submarine Pipeline
1
作者 LIU Run HAO Xintong +3 位作者 LI Chengfeng LI Qingxin YU Zheng ZHAO Dang 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1516-1528,共13页
Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pi... Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pipeline to transform into multiple short pipeline segments,which promote the occurrence of pipeline walking.Thus,a pipeline,which is designed to buckle laterally,may laterally and axially displace over time when subjected to repeated heating and cooling cycles.This study aims to reveal the coupling mechanism of pipeline walking and global lateral buckling.First,an analytic solution is proposed to estimate the walking of pipeline segments between two adjacent buckles.Then,the sensitivity of this method to heating and cooling cycles is analyzed.Results show the applicability of the proposed walking analytical solution of buckling pipelines.Subsequently,an influence analysis of walking on global buckling,including the capacity of buckling initiation,buckling amplitude,buckling mode,and failure assessment of the buckling pipeline,is performed.The results reveal that the effect of walking on the buckling axial force is negligible.However,pipeline walking will aggravate the asymmetry of the pipeline buckling and the failure parameters of the pipeline during the post-buckling. 展开更多
关键词 submarine pipeline global lateral buckling pipeline walking coupling deformation analytic solution
下载PDF
Cell-fluid Interaction: Coupling Between the Deformation of an Adherent Leukocyte and the Shear Flow 被引量:2
2
作者 X.H. LIU~(1,2) H. HUANG~1 C. YU~1 M.J. ZOU~1 X. WANG~3 1(Institute of Biomedical Engineering, Center of West China Medical Sciences, Sichuan University, Chengdu 610041, China)2(Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China)3(LEMTA-UMR-CNRS 7563, Vandoeuvre-les-Nancy, 54500, BP160, France) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期22-,共1页
关键词 Cell-fluid Interaction coupling Between the deformation of an Adherent Leukocyte and the Shear Flow CELL
下载PDF
Nonlinearity analysis of piezoelectric micromachined ultrasonic transducers based on couple stress theory 被引量:4
3
作者 Xin Kang Fu-Jun Yang Xiao-Yuan He 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期104-111,共8页
This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric laye... This paper studies the static deformation behavior of a piezoelectric micromachined ultrasonic transducer (PMUT) actuated by a strong external electric field. The transducer membrane consists of a piezoelectric layer, a passive layer and two electrode layers. The nonlinearities of the piezoelectric layer caused by electrostriction under a strong electric field are analyzed. Because the thickness of the transducer membrane is on the microscale, the size dependence of the deformation behavior is evaluated using the couple stress theory. The results show that the optimal ratio of the top electrode diameter and the membrane diameter is around 0.674. It is also found that this optimal value does not depend on any other parameters if the thicknesses of the two electrodes are negligible compared with those of the piezo- electric and passive layers. In addition, the nonlinearities of the piezoelectric layer will become stronger along with the increase of the electric field, which means that softening of the membrane stiffness occurs when a strong external electric field is applied. Meanwhile, the optimal thickness ratio for the passive layer and the piezoelectric layer is not equal to 1.0 which is usually adopted by previous researchers. Because there exists size dependence of membrane deforma-tion, the optimal value of this thickness ratio needs to be greater than 1.0 on the microscale. 展开更多
关键词 Piezoelectric micromachined ultrasonic trans- ducer (PMUT) Couple stress theory Static deformation - Nonlinearity analysis
下载PDF
A new finite element of spatial thin-walled beams
4
作者 王晓峰 张其林 杨庆山 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第9期1141-1152,共12页
Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factor... Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures. 展开更多
关键词 spatial beams thin-walled section stiffness matrix shear deformation coupling of flexure and torsion second shear stress
下载PDF
Numerical Analysis of Settlement Response of Shallow Footing Subjected to Heavy Rainfall and Flood Events
5
作者 Nadarajah Ravichandran Tharshikka Vickneswaran +1 位作者 Siddharth Marathe Vishnu Saketh Jella 《International Journal of Geosciences》 2021年第2期138-158,共21页
The US and many parts around the world have experienced prolonged periods of heavy rainfall, severe floods, and droughts over the past 50 years. This study investigates the impacts of extreme hydrological events such ... The US and many parts around the world have experienced prolonged periods of heavy rainfall, severe floods, and droughts over the past 50 years. This study investigates the impacts of extreme hydrological events such as heavy rainfall and flood on the settlement behavior of continuous footing installed in unsaturated soil using a coupled Geotechnical-Hydrological finite element software, PLAXIS 2D. Initially, the effect of different degrees of saturation on the settlement behavior of the continuous footing of widths 1.5 m, 3.0 m, and 4.5 m w</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> analyzed by applying a mechanical load. Then the settlement behavior of the footing was analyzed by applying heavy rainfall of intensity 102 mm/day for six days. Finally, the settlement behavior of the footing was analyzed by applying a flood head of 2.5 meters for seven days. The results indicated that the wetting front movement during heavy rainfall and flooding led to the weakening of soil strength and stiffness and induced additional settlements. The additional settlement induced by the flood was significantly higher than the heavy rainfall. The differential settlement was higher when the rainfall was applied on one side of the footing. The rebound of the elastic settlement was uniquely noticed when the flood head receded with time. The results indicated that not all the settlements were induced by the soil saturation but also due to the hydrostatic loading due to the flood head. The settlements induced by the flooding exceeded the allowable settlement of 25 mm, resulting in failure. These additional settlements caused by heavy rainfall and flood will lead to poor serviceability of the structures and cause the failure of the footing. 展开更多
关键词 Coupled Flow deformation Unsaturated Soils Shallow Footings Heavy Rainfall Flood DROUGHT
下载PDF
SECTIONAL FINITE ELEMENT ANALYSIS OF COUPLED DEFORMATION BETWEEN ELASTOPLASTIC SHEET METAL AND VISCO-ELASTOPLASTIC BODY 被引量:4
6
作者 Zhongjin Wang Jianguang Liu 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第2期153-165,共13页
The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium us... The present paper is devoted to developing a new numerical simulation method for the analysis of viscous pressure forming (VPF), which is a sheet flexible-die forming (FDF) process. The pressure-carrying medium used in VPF is one kind of semisolid, flowable and viscous material and its deformation behavior can be described by the visco-elastoplastic constitutive model. A sectional finite element model for the coupled deformation analysis between the viscoelastoplastic pressure-carrying medium and the elastoplastic sheet metal is proposed. The resolution of the Updated Lagrangian (UL) formulation is based on a static explicit approach. The frictional contact between sheet metal and visco-elastoplastic pressure-carrying medium is treated by the penalty function method. Coupled deformation between sheet metal and visco-elastoplastic pressure-carrying medium with large slip is analyzed to validate the developed algorithm. Finally, the viscous pressure bulging (VPB) process of DC06 sheet metal is simulated. Good agreement between numerical simulation results and experimental measurements shows the validity of the developed algorithm. 展开更多
关键词 viscous pressure forming(VPF) sheet forming sectional finite element analysis coupled deformation visco-elastoplastic pressure-carrying medium
原文传递
A Thermo-Magneto-Mechanically Coupled Constitutive Model of Magnetic Shape Memory Alloys 被引量:1
7
作者 Chao Yu Guozheng Kang Daining Fang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第5期535-556,共22页
A macroscopic phenomenological constitutive model considering the martensite transformation and its reverse is constructed in this work to describe the thermo-magneto- mechanically coupled deformation of polycrystalli... A macroscopic phenomenological constitutive model considering the martensite transformation and its reverse is constructed in this work to describe the thermo-magneto- mechanically coupled deformation of polycrystalline magnetic shape memory alloys (MSMAs) by referring to the existing experimental results. The proposed model is established in the frame- work of thermodynamics by introducing internal state variables. The driving force of martensite transformation, the internal heat production and the thermodynamic constraints on constitutive equations are obtained by Clausius dissipative inequality and constructed Gibbs free energy. The spatiotemporal evolution equation of temperature is deduced from the first law of thermodynam- ics. The demagnetization effect occurring in the process of magnetization is also addressed. The proposed model is verified by comparing the predictions with the corresponding experiments. It is concluded that the thermo-magneto-mechanically coupled deformation of MSMAs including the magnetostrietive and magnetocaloric effects at various temperatures can be reasonably described by the proposed model, and the magnetocaloric effect can be significantly improved over a wide range of temperature by introducing an additional applied stress. 展开更多
关键词 Magnetic shape memory alloys Constitutive model Martensite transformation Thermo-magneto-mechanically coupled deformation Magnetostrictive and magnetocaloric effects
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部