期刊文献+
共找到571篇文章
< 1 2 29 >
每页显示 20 50 100
Dynamic thermo-mechanical responses of road-soft ground system under vehicle load and daily temperature variation
1
作者 Chuxuan Tang Jie Liu +3 位作者 Zheng Lu Yang Zhao Jing Zhang Yinuo Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1722-1731,共10页
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav... A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system. 展开更多
关键词 Dynamic response Vehicle load Daily temperature variation Thermo-poroelastic medium coupling effects
下载PDF
Flow behaviour constitutive model of CuCrZr alloy and 35CrMo steel based on dynamic recrystallization softening effect under elevated temperature 被引量:2
2
作者 HUANG Yuan-chun LI Ming +2 位作者 MA Cun-qiang XIAO Zheng-bing LIU Yu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1550-1562,共13页
In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using G... In order to study the effect of dynamic recrystallization on the metal flow behavior during thermal deformation,the elevated temperature compression experiments of CuCrZr alloy and 35CrMo steel are carried out using Gleeble-3810 thermal simulator.It is proved that the samples underwent obvious dynamic recrystallization behavior during thermal deformation by microstructure observation of deformed specimens.The size of recrystallized grains increases as the temperature improved and the strain rate decreased.Meanwhile,the net softening rate caused by dynamic recrystallization is determined based on the stress-dislocation relationship.It can be found that the value of net softening rate increases quadratically as the Z parameter decreases,and the dynamic recrystallization net softening rate of CuCrZr alloy and 35CrMo steel are calculated to be 21.9%and 29.8%,respectively.Based on the dynamic recrystallization softening effect proposed,the novel elevated temperature flow constitutive models of two different alloys are proposed,and the related parameters are well defined and solved in detail.The predicted values of the obtained models are agreed well with the experimental values. 展开更多
关键词 CuCrZr alloy 35CrMo steel dynamic recrystallization dynamic recrystallization softening effect high temperature flow constitutive model
下载PDF
Interface bond degradation and damage characteristics of full-length grouted rock bolt in tunnels with high temperature 被引量:1
3
作者 Yunpeng Hu Mingming Zheng +5 位作者 Wenkai Feng Jianjun Tong Yicheng Wang Qiling Wang Kan Liu Longzhen Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2639-2657,共19页
Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by exte... Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels. 展开更多
关键词 High-geothermal tunnels Anchoring structure coupling effect of temperature and humidity Bond degradation Interfacial damage mechanism
下载PDF
Effects of effective stress and temperature on permeability of sandstone from CO2-plume geothermal reservoir 被引量:5
4
作者 Y.Z.Sun L.Z.Xie +2 位作者 B.He C.Gao J.Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期819-827,共9页
Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introdu... Rock is generally complex and heterogeneous,therefore the heterogeneity effects of effective stress and temperature on permeability should be taken into account.In this study,two-part Hooke’s model(TPHM) is introduced to understand the influences of effective stress and temperature on permeability of soft and hard parts(two parts) of rock based on coupling thermo-hydro-mechanical tests.Under a fixed temperature level(25 ℃.35 ℃.50 ℃.65 ℃.80 ℃.90 ℃ and 95 ℃).the tests were carried out in a conventional triaxial system whereas the confining pressure was remained at 50 MPa.and the pore pressure was increased to the specified levels step by step.i.e.8 MPa,18 MPa.28 MPa.38 MPa.41 MPa,44 MPa.46 MPa and 48 MPa.The temperature-dependent relationships for two parts permeabilities are proposed on the basis of the initial test results.We point out that temperature of 65 ℃-90 ℃ is the threshold for the development of CO2-plume geothermal(CPC) reservoir sandstone cracking under low effective stress(2-9 MPa) based on the relationship between temperature and soft part permeability.Furthermore,we discuss the effect of temperature on the two parts in the rock.The results indicate that as the temperature increases from 25 ℃ to 65 ℃.the flow channel in the hard part has a stronger response to temperature than that in the soft part at a fixed effective stress level,which is opposite to the situation of effective stress.Considering that natural rock is generally heterogeneous with non-uniform pore structure,we suggest a physical interpretation of the phenomenon that before the thermal cracking threshold the two parts have different responses to temperature. 展开更多
关键词 Sandstone from CO2-plume geothermal (CPG) reservoir temperature and effective stress flow channel Two parts permeabilities
下载PDF
Effective(kinetic freeze-out) temperature, transverse flow velocity, and kinetic freeze-out volume in high energy collisions 被引量:2
5
作者 Muhammad Waqas Fu-Hu Liu +1 位作者 Li-Li Li Haidar Mas’ud Alfanda 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第11期36-49,共14页
The transverse momentum spectra of different types of particles produced in central and peripheral gold–gold(Au–Au)and inelastic proton–proton(pp)collisions at the Relativistic Heavy Ion Collider,as well as in cent... The transverse momentum spectra of different types of particles produced in central and peripheral gold–gold(Au–Au)and inelastic proton–proton(pp)collisions at the Relativistic Heavy Ion Collider,as well as in central and peripheral lead-lead(Pb–Pb)and pp collisions at the Large Hadron Collider,are analyzed by the multi-component standard(Boltzmann–Gibbs,Fermi–Dirac,and Bose–Einstein)distributions.The obtained results from the standard distribution give an approximate agreement with the measured experimental data by the STAR,PHENIX,and ALICE Collaborations.The behavior of the effective(kinetic freeze-out)temperature,transverse flow velocity,and kinetic freeze-out volume for particles with different masses is obtained,which observes the early kinetic freezeout of heavier particles as compared to the lighter particles.The parameters of emissions of different particles are observed to be different,which reveals a direct signature of the mass-dependent differential kinetic freeze-out.It is also observed that the peripheral nucleus–nucleus(AA)and pp collisions at the same center-of-mass energy per nucleon pair are in good agreement in terms of the extracted parameters. 展开更多
关键词 Transverse momentum spectra effective temperature Kinetic freeze-out temperature Transverse flow velocity Kinetic freeze-out volume
下载PDF
Temperature dependence of mode coupling effect in piezoelectric vibrator made of[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
6
作者 Nai-Xing Huang En-Wei Sun +4 位作者 Rui Zhang Bin Yang Jian Liu Tian-Quan Lv Wen-Wu Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期363-368,共6页
The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical cou... The influence of temperature on mode coupling effect in piezoelectric vibrators remains unclear.In this work,we discuss the influence of temperature on two-dimensional(2D)mode coupling effect and electromechanical coupling coefficient of cylindrical[001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT piezoelectric single-crystal vibrator with an arbitrary configuration ratio.The electromechanical coupling coefficient kt decreases with temperature increasing,whereas k33 is largely invariant in a temperature range of 25℃-55℃.With the increase of temperature,the shift in the‘mode dividing point’increases the scale of the poling direction of the piezoelectric vibrator.The temperature has little effect on coupling constantΓ.At a given temperature,the coupling constantΓof the cylindrical vibrator is slightly greater than that of the rectangular vibrator.When the temperature changes,the applicability index(M)values of the two piezoelectric vibrators are close to 1,indicating that the coupling theory can be applied to piezoelectric vibrators made of late-model piezoelectric single crystals. 展开更多
关键词 mode coupling effect piezoelectric vibrator piezoelectric single crystal temperature dependence
下载PDF
Temperature Effect on the Conformation Transition of Ultra-high Molecular Weight Polyethylene/Polypropylene Blends Undergoing Continuous Volume Extensional Flow:A Mesoscopic Simulation
7
作者 WANG Junxia YAN Shilin YU Dingshan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期540-545,共6页
Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the mole... Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains. 展开更多
关键词 temperature effect dissipative particle dynamics ultra-high molecular weight polyethylene POLYPROPYLENE volume extensional flow chain conformation BLENDS
下载PDF
Abnormality of Magnetic Behavior and Resistivity of La_(0.7-x)Dy_x Sr_(0.3)MnO_3 (0.00≤x≤0.30)System at Low Temperature
8
作者 刘宁 徐素军 +1 位作者 童伟 严国清 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第2期173-177,共5页
By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been... By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping. 展开更多
关键词 MANGANITE Abnormality of resistivity at low temperature Lattice effect Extra magnetic coupling
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:2
9
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster 被引量:1
10
作者 Hong LI Xingyu LIU +4 位作者 Zhiyong GAO Yongjie DING Liqiu WEI Daren YU Xiaogang WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期96-106,共11页
Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode tem... Propellant gas flow has an important impact on the ionization and acceleration process of Hall effect thrusters (HETs). In this paper, a particle-in-cell numerical method is used to study the effect of the anode temperature, i.e., the flow speed of the propellant gas, on the discharge characteristics of a HET. The simulation results show that, no matter the magnitude of the discharge voltage, the calculated variation trends of performance parameters with the anode temperature are in good agreement with the experimental ones presented in the literature. Further mechanism analysis indicates that the magnitude of the electron temperature is responsible for the two opposing variation laws found under different discharge voltages. When the discharge voltage is low, the electron temperature is low, and so is the intensity of the propellant ionization; the variation of the thruster performance with the anode temperature is thereby determined by the variation of the neutral density that affects the propellant utilization efficiency. When the discharge voltage is high, the electron temperature is large enough to guarantee a high degree of the propellant utilization no matter the magnitude of the anode temperature. The change of the thruster performance with the anode temperature is thus dominated by the change of the electron temperature and consequently the electron-neutral collisions as well as the electron cross-field mobility that affect the current utilization efficiency. 展开更多
关键词 Hall effect thruster anode temperature neutral flow discharge characteristics particle-in-cell simulation
下载PDF
Numerical Investigation on the Flow and Temperature Fields in an Inductively Coupled Plasma Reactor 被引量:1
11
作者 吴彬 林烈 +1 位作者 张秀杰 吴承康 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第6期565-571,共7页
This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plas... This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plasma to calculate the temperature and flow field of the reactor as well as the generator. The algorithm is based on the solutions of the two-dimensional continuity, momentum, and energy equations in term of vorticity, stream function and enthalpy. An upwind finite-difference scheme was adopted to solve those equations with appropriate boundary conditions. The computed results show that there is a flat region with little parameter change in the reactor, that the diameter of the region is not much larger than that of the generator and that a deep change of parameter exists in the outer side of the region. 展开更多
关键词 RE Numerical Investigation on the flow and temperature Fields in an Inductively Coupled Plasma Reactor
下载PDF
Development and application of coupling model of aluminum thin-gauge high-speed casting 被引量:1
12
作者 刘晓波 毛大恒 钟掘 《中国有色金属学会会刊:英文版》 CSCD 2005年第3期485-490,共6页
Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included... Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included the casting roller shell. At the same time, Galerkin method was adopted to solve the coupling model. The fluid field and temperature field of aluminum melt in casting zone, the temperature field and thermal stress field of roller shells were simulated by the coupling model. When the casting velocity is 7m/min, and the thickness of strip is 2mm, the circumfluent area comes into being in the casting zone, and the mushy zone dominates the casting zone, while the temperature of melt decreases rapidly as it approaches the rollers. The temperature of the roller shell varies periodically with the rotation of roller, and reaches the highest temperature in the casting zone, while the temperature of roller shell decreases gradually as it leaves the casting zone. The difference of thermal stress between the inner surface and outer surface of the roller shell is very large, and the outer surface suffers tensile-compressive stress. 展开更多
关键词 高速铸造 铝合金 温度场 压力场 耦合模型
下载PDF
The effect of moving bottlenecks on a two-lane traffic flow
13
作者 方远 陈建忠 彭志远 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期638-645,共8页
In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to rep... In this paper, we study the effect of moving bottlenecks on traffic flow. The full velocity difference (FVD) model is extended to the traffic flow on a two-lane highway, and new lane changing rule is proposed to reproduce the vehicular lane changing behavior. Using this model, we derive the fundamental current-density diagrams for the traffic flow with the effect of moving bottleneck. Moreover, typical time-space diagram for a two-lane highway shows the formation and dissipation of a moving bottleneck. Results demonstrate that the effect of moving bottleneck enlarges with the increase of traffic density, but the effect can be reduced by increasing the maximum velocity of heavy truck. The effects of multiple moving bottlenecks under different conditions are investigated. The effect becomes more remarkable when the coupling effect of multiple moving bottlenecks occurs. 展开更多
关键词 traffic flow moving bottleneck lane changing coupling effect
下载PDF
Coupled Modeling of Electromagnetic Fleld,Fluid Flow,Heat Transfer and Solidification During Conventional DC Casting and Low Ftequency Electrmagnetic Casting of 7xxx Aluminum Alloys
14
作者 Nagaum Hiromi 《特种铸造及有色合金》 CAS CSCD 北大核心 2008年第S1期485-490,共6页
A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model i... A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting. 展开更多
关键词 low frequency electromagnetic casting DC casting coupled modeling temperature field fluid flow solidification.
下载PDF
Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature 被引量:1
15
作者 李柳暗 张家琦 +1 位作者 刘扬 敖金平 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期445-447,共3页
In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process... In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs. 展开更多
关键词 metal-oxide-semiconductor heterostructure field-effect transistors low temperature ohmic pro-cess inductively coupled plasma
下载PDF
Fluid Flow and Solidification Simulation in Beam Blank Continuous Casting Process With 3D Coupled Model 被引量:14
16
作者 YANG Jian-wei DU Yan-ping +1 位作者 SHI Rong CUI Xiao-chao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第4期17-21,共5页
Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidi... Based on turbulent theory, a 3D coupled model of fluid flow and solidification was built using finite difference method and used to study the influence of superheating degree and casting speed on fluid flow and solidification, analyze the interaction between shell and molten steel, and compare the temperature distribution under different technological conditions. The results indicate that high superheating degree can lengthen the liquid-core depth and make the crack and breakout possible, so suitable superheating should be controlled within 35℃ according to the simulation results. Casting speed which is one of the most important technological parameters of improving production rate, should be controlled between 0. 85 m/min and 1.05 m/min and the caster has great potential in the improvement of blank quality. 展开更多
关键词 beam blank continuous casting flow field temperature distribution coupled model SOLIDIFICATION
下载PDF
Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion 被引量:5
17
作者 Ying Song Shaofan Li Shuai Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期15-35,共21页
De-icing technology has become an increasingly important subject in numerous applications in recent years.However,the direct numerical modeling and simulation the physical process of thermomechanical deicing is limite... De-icing technology has become an increasingly important subject in numerous applications in recent years.However,the direct numerical modeling and simulation the physical process of thermomechanical deicing is limited.This work is focusing on developing a numerical model and tool to direct simulate the de-icing process in the framework of the coupled thermo-mechanical peridynamics theory.Here,we adopted the fully coupled thermo-mechanical bond-based peridynamics(TM-BB-PD)method for modeling and simulation of de-icing.Within the framework of TM-BB-PD,the ice constitutive model is established by considering the influence of the temperature difference between two material points,and a modified failure criteria is proposed,which takes into account temperature effect to predict the damage of quasi-brittle ice material.Moreover,thermal boundary condition is used to simulate the thermal load in the de-icing process.By comparing with the experimental results and the previous reported finite element modeling,our numerical model shows good agreement with the previous predictions.Based on the numerical results,we find that the developed method can not only predict crack initiation and propagation in the ice,but also predict the temperature distribution and heat conduction during the de-icing process.Furthermore,the influence of the temperature for the ice crack growth pattern is discussed accordingly.In conclusion,the coupled thermal-mechanical peridynamics formulation with modified failure criterion is capable of providing a modeling tool for engineering applications of de-icing technology. 展开更多
关键词 Crack growth DE-ICING PERIDYNAMICS Failure criteria temperature effect Thermal mechanical coupling
下载PDF
Tidal effects on temperature iront in the Yellow Sea 被引量:6
18
作者 马建 乔方利 +1 位作者 夏长水 杨永增 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2004年第3期314-321,共8页
Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring,thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distributio... Temperature front (TF) is one of the important features in the Yellow Sea, which forms in spring,thrives in summer, and fades in autumn as thermocline declines. TF intensity |ST| is defined to describe the distribution of TF. Based on the MASNUM wave-tide-circulation coupled model, temperature distribution in the Yellow Sea was simulated with and without tidal effects. Along 36°N, distribution of TF from the simulated results are compared with the observations, and a quantitative analysis is introduced to evaluate the tidal effects on the forming and maintaining processes of the TF. Tidal mixing and the circulation structure adapting to it are the main causes of the TF. 展开更多
关键词 temperature front tidal effects tidal mixing wave-tide-circulation coupled model Yellow Sea Cold Water Mass
下载PDF
NUMERICAL SIMULATION OF MOLTEN POOL AND CONTROL STRATEGY OF KISS POINT IN A TWIN-ROLL STRIP CASTING PROCESS 被引量:2
19
作者 G.M. Cao C.G. Li Z. Y. Liu D. Wu G.D. Wang X.H. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第6期459-468,共10页
Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the ... Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed. 展开更多
关键词 Twin-roll strip casting Coupled temperature and flow field Numerical simulation Kiss point Control strategy
下载PDF
Temperature influence on macro-mechanics parameter of intact coal sample containing original gas from Baijiao Coal Mine in China 被引量:5
20
作者 Wang Chunguang He Manchao +2 位作者 Zhang Xiaohu Liu Zhaoxia Zhao Tongbin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期584-589,共6页
Investigation of temperature effect on mechanical parameters of coal is very important for understanding the mechanical response of coal bed at high temperature.It is especially benefcial for mitigating the thermal-in... Investigation of temperature effect on mechanical parameters of coal is very important for understanding the mechanical response of coal bed at high temperature.It is especially benefcial for mitigating the thermal-induced disasters occurred in those coal mines suffering from heat hazard.In this work,coal samples,obtained from the No.2442 working face of Baijiao Coal Mine,were subjected to uniaxial compression ranging from 20 to 40℃ with an interval of 5℃.The apparatus used was designed to obtain deformation of a stressed sample,as well as the emission of gases desorbing from coal matrix.The adsorbed gas desorption caused by heating is measured during the entire testing.It is evident that the concentrations of releasing gas(containing methane,carbon dioxide and ethane)slightly rise with increasing temperature.Gas movement observed is closely related to the deformation of coal sample.Both uniaxial compressive strength and elastic modulus of coal samples tend to reduce with temperature.It reveals that increasing temperature can not only result in thermal expansion of coal,but also lead to desorption of preexisting gas in coal which can in turns harden coal due to shrinks of the coal matrix.Even though desorption of adsorbed gas can contribute to the hardening effect for the heated coal,by comparison to the results,it could be inferred that the softening of coal resulted from thermal expansion still predominates changes in mechanical characters of coal sample with temperature at the range from20 to 40℃. 展开更多
关键词 Gas flow coupling of temperature and pressure Adsorption Desorption
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部