期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The fast method and convergence analysis of the fractional magnetohydrodynamic coupled flow and heat transfer model for the generalized second-grade fluid 被引量:1
1
作者 Xiaoqing Chi Hui Zhang Xiaoyun Jiang 《Science China Mathematics》 SCIE CSCD 2024年第4期919-950,共32页
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h... In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail. 展开更多
关键词 fractional MHD coupled flow and heat transfer model generalized second-grade fuid fast method convergence analysis numerical simulation
原文传递
Optimization of water-urban-agricultural-ecological land use pattern:A case study of Guanzhong Basin in the southern Loess Plateau of Shaanxi Province,China
2
作者 Sai Wang Bin Wu +6 位作者 Hai-xue Li Min-min Zhao Lei Yuan Xi Wu Tao Ma Fu-cheng Li Shuang-bao Han 《China Geology》 CAS CSCD 2024年第3期480-493,共14页
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov... Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%. 展开更多
关键词 Coupled Ground-Water and Surface-Water flow model(GSflow) Land use patterns Water resources optimization Ecological and economic benefits coupling model Hydrological environmental engineering Guanzhong Basin Southern Loess Plateau Yellow River basin
下载PDF
A Feasible Zone Analysis Method with Global Partial Load Scanning for Solving Power Flow Coupling Models of CCHP Systems 被引量:1
3
作者 Pohan Chen Kai Sun +1 位作者 Chenghui Zhang Bo Sun 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期371-377,共7页
Heat exchanger systems(HXSs)or heat recovery steam generators(HRSGs)are commonly used in 100 kW to 50 MW combined cooling,heating,and power(CCHP)systems.Power flow coupling(PFC)is found in HXSs and is complex for rese... Heat exchanger systems(HXSs)or heat recovery steam generators(HRSGs)are commonly used in 100 kW to 50 MW combined cooling,heating,and power(CCHP)systems.Power flow coupling(PFC)is found in HXSs and is complex for researchers to quantify.This could possibly mislead the dispatch schedule and result in the inaccurate dispatch.PFC is caused by the inlet and outlet temperatures of each component,gas flow pressure variation,conductive medium flow rate,and atmosphere condition variation.In this paper,the expression of PFC is built by using quadratic functions to fit the non!inearit>of thermal dynamics.While fitting the model,the environmental condition needs prediction,which is calculated using phase space reconstruction(PSR)Kalman filter.In order to solve the complex quadratic dispatch model,a hybrid following electricity load(FEL)and following thermal load(FTL)mode for reducing the dimension of dispatch model,and a feasible zone analysis(FZA)method are proposed.As a result,the PFC problem of CCHP system is solved,and the dispatch cost,investment cost,and the maximum power requirements are optimized.In this paper,a case in Jinan,China is studied.The PFC model is proven to be more precise and accurate compared with traditional models. 展开更多
关键词 Combined cooling heating and power(CCHP)system renewable energy source(RES) load prediction operation strategy exergy and energy analysis power flow coupling(PFC)model.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部