A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpi...A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China展开更多
This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface. The study considers the effects of frictional heating (viscous dissipat...This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface. The study considers the effects of frictional heating (viscous dissipation) and internal heat generation or ab- sorption. The basic equations governing the flow and heat transfer are reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformations. The transformed equations are numerically solved by the Runge-Kutta-Fehlberg-45 order method. An analysis is carried out for two different cases of heating processes, namely, variable wall temperature (VWT) and variable heat flux (VHF). The effects of various physical parameters such as the magnetic parameter, the fluid-particle interaction pa- rameter, the unsteady parameter, the Prandtl number, the Eckert number, the number density of dust particles, and the heat source/sink parameter on velocity and temperature profiles are shown in several plots. The effects of the wall temperature gradient function and the wall temperature function are tabulated and discussed.展开更多
A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection th...A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through yon Karman's similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing.展开更多
Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation...Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation was carried out to study the fluid flow and heat transfer in the funnel shaped mold. The influence of nozzle design, casting speed and nozzle submersion depth on the flow and temperature fields in the mold was investigated, and guidance for selecting configurations of submerged nozzle was obtained.展开更多
Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic,...Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic, electrically conducting fluid past a continuously stretching sheet. The ranges of the parametric values are obtained for which the system has a unique pair of solutions, a double pair of solutions and infinitely many solutions.展开更多
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f...A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results.展开更多
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation...The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.展开更多
An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. ...An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. Heat transfer characteristics are examined for two different kinds of boundary conditions, namely 1) variable wall temperature and 2) variable heat flux. The governing partial differential equations are transformed to system of ordinary differential equations. These equations are solved numerically by applying RKF-45 method. The effects of various physical parameters such as magnetic parameter, dust interaction parameter, number density, Prandtl number, Eckert number, heat source/sink parameter and unsteadiness parameter on velocity and temperature profiles are studied.展开更多
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newto- nian Casson fluid bounded by two parallel non-conducting porous plates has been studied with heat transfer consider...The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newto- nian Casson fluid bounded by two parallel non-conducting porous plates has been studied with heat transfer considering the Hall effect. The fluid is acted upon by a uniform and exponential decaying pressure gradient. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and the upper plate is suddenly set into mo- tion and simultaneously suddenly isothermally heated to a temperature other than the lower plate temperature. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of unsteady pressure gradient, the Hall term, the parameter describing the non-Newtonian behavior on both the velocities and temperature distributions have been stud- ied.展开更多
A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for w...A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.展开更多
In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By vari...In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.展开更多
We investigated the influence of hall, heat and mass transfer on the peristaltic flow of MHD third order fluid under long-wavelength and low Reynolds number approximation. The governing equations are solved analytical...We investigated the influence of hall, heat and mass transfer on the peristaltic flow of MHD third order fluid under long-wavelength and low Reynolds number approximation. The governing equations are solved analytically with the appropriate boundary conditions by using perturbation technique. The formula of velocity with temperature and concentration is obtained analytically as a function of the physical parameters of the problem.展开更多
The paper investigates the numerical solution of problem of magnetohydrodynamic (MHD) micropolar fluid flow with heat and mass transfer towards a stagnation point on a vertical plate. In this study, we consider both s...The paper investigates the numerical solution of problem of magnetohydrodynamic (MHD) micropolar fluid flow with heat and mass transfer towards a stagnation point on a vertical plate. In this study, we consider both strong concentrations (n = 0) and weak concentrations (n = 1/2). The governing equations have been transformed into nonlinear ordinary differential equations by applying the similarity transformation and have been solved numerically by using the finite difference method (FDM) and analytically by using (DTM). The effects of various governing parameters, namely, material parameter, radiation parameter, magnetic parameter, Prandtl number, Schmidt number, chemical reaction parameter and Soret number on the velocity, microrotation, temperature and concentration have been computed and discussed in detail through some figures and tables. In order to verify the accuracy of the present results, we have compared these results with the analytical solutions by using the differential transform method (DTM) and the multi-step differential transform method (MDTM). It is observed that this approximate numerical solution is in good agreement with the analytical solution.展开更多
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel...Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.展开更多
In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long waveleng...In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long wavelength approximation by using a regular perturbation method. Explicit expressions of solutions for the stream function, the velocity, the pressure gradient, the temperature, and the heat transfer coefficient are presented. Pumping and trapping phenomena are analyzed for increasing the slip parameter. Further, the temperature profiles and the heat transfer coefficient are observed for various increasing parameters. It is found that these parameters considerably affect the considered flow characteristics. Comparisons with published results for the no-slip case are found in close agreement.展开更多
In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exa...In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.展开更多
The convective heat transfer and friction behaviors of turbulent tube flow through a straight tape with double-sided delta wings(T-W)have been studied experimentally.In the current work,the T-W formed on the tape was ...The convective heat transfer and friction behaviors of turbulent tube flow through a straight tape with double-sided delta wings(T-W)have been studied experimentally.In the current work,the T-W formed on the tape was used as vortex generators for enhancing the heat transfer coefficient by breakdown of thermal boundary layer and by mixing of fluid flow in tubes.The T-W characteristics are(1)T-W with forward/backward-wing arrangement,(2)T-W with alternate axis(T-WA),(3)three wing-width ratios and(4)wing-pitch ratios.The experimental result reveals that for using the T-W,the increases in the mean Nusselt number(Nu)and friction factor are,respectively,up to 165%and 14.8 times of the plain tube and the maximum thermal performance factor is 1.19.It is also obvious that the T-W with forward-wing gives higher heat transfer rate than one with backward-wing around 7%. The present investigation also shows that the heat transfer rate and friction factor obtained from the T-WA is higher than that from the T-W.In addition,the flow pattern and temperature fields in the T-W tube with both backward and forward wings were also examined numerically.展开更多
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do...A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.展开更多
Exact solutions for an incompressible,viscoelas-tic,electrically conducting MHD aligned fluid are obtainedfor velocity components and temperature profiles.Lie Groupmethod is applied to obtain the solution and the symm...Exact solutions for an incompressible,viscoelas-tic,electrically conducting MHD aligned fluid are obtainedfor velocity components and temperature profiles.Lie Groupmethod is applied to obtain the solution and the symmetriesused are of translational type.展开更多
The magnetohydrodynamic (MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated. The governing partial differential equa- tions are converted into the ordinary differential...The magnetohydrodynamic (MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated. The governing partial differential equa- tions are converted into the ordinary differential equations by suitable transformations. The transformed equations are solved by the homotopy analysis method (HAM). The expressions for square residual errors are defined, and the optimal values of convergence- control parameters are selected. The dimensionless velocity and temperature fields are examined for various dimensionless parameters. The skin friction coefficient and the Nus- selt number are tabulated to analyze the effects of dimensionless parameters.展开更多
基金The research work was surpported by the National Natural Science Foundation of China.
文摘A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China
基金Project supported by the Major Research Project of Department of Science and Technology (DST)of New Delhi (No. SR/S4/MS:470/07,25-08-2008)
文摘This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface. The study considers the effects of frictional heating (viscous dissipation) and internal heat generation or ab- sorption. The basic equations governing the flow and heat transfer are reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformations. The transformed equations are numerically solved by the Runge-Kutta-Fehlberg-45 order method. An analysis is carried out for two different cases of heating processes, namely, variable wall temperature (VWT) and variable heat flux (VHF). The effects of various physical parameters such as the magnetic parameter, the fluid-particle interaction pa- rameter, the unsteady parameter, the Prandtl number, the Eckert number, the number density of dust particles, and the heat source/sink parameter on velocity and temperature profiles are shown in several plots. The effects of the wall temperature gradient function and the wall temperature function are tabulated and discussed.
文摘A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through yon Karman's similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing.
文摘Thin slab casting is used widely in the world. The control of molten steel flow and solidification in the mold is difficult due to the high casting speed and complicated configuration of the mold. Numerical simulation was carried out to study the fluid flow and heat transfer in the funnel shaped mold. The influence of nozzle design, casting speed and nozzle submersion depth on the flow and temperature fields in the mold was investigated, and guidance for selecting configurations of submerged nozzle was obtained.
文摘Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic, electrically conducting fluid past a continuously stretching sheet. The ranges of the parametric values are obtained for which the system has a unique pair of solutions, a double pair of solutions and infinitely many solutions.
基金The research is supported by China Postdoctoral Science Foundation (No. 20080430129 ) and National Key Technology R&D Program ( No. 2007 BAE07 B07 ).
文摘A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results.
文摘The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.
文摘An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. Heat transfer characteristics are examined for two different kinds of boundary conditions, namely 1) variable wall temperature and 2) variable heat flux. The governing partial differential equations are transformed to system of ordinary differential equations. These equations are solved numerically by applying RKF-45 method. The effects of various physical parameters such as magnetic parameter, dust interaction parameter, number density, Prandtl number, Eckert number, heat source/sink parameter and unsteadiness parameter on velocity and temperature profiles are studied.
文摘The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newto- nian Casson fluid bounded by two parallel non-conducting porous plates has been studied with heat transfer considering the Hall effect. The fluid is acted upon by a uniform and exponential decaying pressure gradient. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and the upper plate is suddenly set into mo- tion and simultaneously suddenly isothermally heated to a temperature other than the lower plate temperature. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of unsteady pressure gradient, the Hall term, the parameter describing the non-Newtonian behavior on both the velocities and temperature distributions have been stud- ied.
文摘A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.
文摘In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.
文摘We investigated the influence of hall, heat and mass transfer on the peristaltic flow of MHD third order fluid under long-wavelength and low Reynolds number approximation. The governing equations are solved analytically with the appropriate boundary conditions by using perturbation technique. The formula of velocity with temperature and concentration is obtained analytically as a function of the physical parameters of the problem.
文摘The paper investigates the numerical solution of problem of magnetohydrodynamic (MHD) micropolar fluid flow with heat and mass transfer towards a stagnation point on a vertical plate. In this study, we consider both strong concentrations (n = 0) and weak concentrations (n = 1/2). The governing equations have been transformed into nonlinear ordinary differential equations by applying the similarity transformation and have been solved numerically by using the finite difference method (FDM) and analytically by using (DTM). The effects of various governing parameters, namely, material parameter, radiation parameter, magnetic parameter, Prandtl number, Schmidt number, chemical reaction parameter and Soret number on the velocity, microrotation, temperature and concentration have been computed and discussed in detail through some figures and tables. In order to verify the accuracy of the present results, we have compared these results with the analytical solutions by using the differential transform method (DTM) and the multi-step differential transform method (MDTM). It is observed that this approximate numerical solution is in good agreement with the analytical solution.
基金supported by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia
文摘Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.
基金supported by the Ministry of Higher Education (MOHE)the Research Management Centre, UTM (Nos. 03J54, 78528, and 4F109)
文摘In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long wavelength approximation by using a regular perturbation method. Explicit expressions of solutions for the stream function, the velocity, the pressure gradient, the temperature, and the heat transfer coefficient are presented. Pumping and trapping phenomena are analyzed for increasing the slip parameter. Further, the temperature profiles and the heat transfer coefficient are observed for various increasing parameters. It is found that these parameters considerably affect the considered flow characteristics. Comparisons with published results for the no-slip case are found in close agreement.
文摘In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical ex- pression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.
基金Supported by the Thailand Research Fund(TRF),Office of Higher Education Commission and Mahanakorn University of Technology
文摘The convective heat transfer and friction behaviors of turbulent tube flow through a straight tape with double-sided delta wings(T-W)have been studied experimentally.In the current work,the T-W formed on the tape was used as vortex generators for enhancing the heat transfer coefficient by breakdown of thermal boundary layer and by mixing of fluid flow in tubes.The T-W characteristics are(1)T-W with forward/backward-wing arrangement,(2)T-W with alternate axis(T-WA),(3)three wing-width ratios and(4)wing-pitch ratios.The experimental result reveals that for using the T-W,the increases in the mean Nusselt number(Nu)and friction factor are,respectively,up to 165%and 14.8 times of the plain tube and the maximum thermal performance factor is 1.19.It is also obvious that the T-W with forward-wing gives higher heat transfer rate than one with backward-wing around 7%. The present investigation also shows that the heat transfer rate and friction factor obtained from the T-WA is higher than that from the T-W.In addition,the flow pattern and temperature fields in the T-W tube with both backward and forward wings were also examined numerically.
基金National Natural Science Foundation of China (21878102)
文摘A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact.
文摘Exact solutions for an incompressible,viscoelas-tic,electrically conducting MHD aligned fluid are obtainedfor velocity components and temperature profiles.Lie Groupmethod is applied to obtain the solution and the symmetriesused are of translational type.
文摘The magnetohydrodynamic (MHD) flow of the third grade fluid between two permeable disks with heat transfer is investigated. The governing partial differential equa- tions are converted into the ordinary differential equations by suitable transformations. The transformed equations are solved by the homotopy analysis method (HAM). The expressions for square residual errors are defined, and the optimal values of convergence- control parameters are selected. The dimensionless velocity and temperature fields are examined for various dimensionless parameters. The skin friction coefficient and the Nus- selt number are tabulated to analyze the effects of dimensionless parameters.