Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative resea...Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.展开更多
To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and...To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.展开更多
基金supported by the National Natural Science Foundation of China(52004013,U1762211).
文摘Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.
基金Project(50779032)supported by the National Natural Science Foundation of ChinaProject(20090451330)supported by the Postdoctoral Foundation of ChinaProject(BS2013SF007)supported by Shandong Scientific Research Award Foundation for Outstanding Young Scientists,China
文摘To analyze the dynamic response and reliability of a continuous beam bridge under the action of an extra heavy vehicle, a vehicle–bridge coupled vibration model was established based on the virtual work principle and vehicle–bridge displacement compatibility equation, which can accurately simulate the dynamic characteristics of the vehicle and bridge. Results show that deck roughness has an important function in the effect of the vehicle on the bridge. When an extra heavy vehicle passes through the continuous beam bridge at a low speed of 5 km/h, the impact coefficient reaches a high value, which should not be disregarded in bridge safety assessments. Considering that no specific law exists between the impact coefficient and vehicle speed, vehicle speed should not be unduly limited and deck roughness repairing should be paid considerable attention. Deck roughness has a significant influence on the reliability index, which decreases as deck roughness increases. For the continuous beam bridge in this work, the reliability index of each control section is greater than the minimum reliability index. No reinforcement measures are required for over-sized transport.