We should calculate the coupling degree of medical investment, resident health and economic growth in Sichuan Province, and make clear the coordinated development of the aforementioned three factors. In that, the gove...We should calculate the coupling degree of medical investment, resident health and economic growth in Sichuan Province, and make clear the coordinated development of the aforementioned three factors. In that, the government was able to formulate policies that feature the positive interaction and coordinated development of regional medical investment, health and economy. Methods on index system for the evaluation of health investment, resident health and economic growth were constructed, and the coupling and coordination degree of the three systems were empirically studied based on the entropy weight method, the coupling coordination model and the gray correlation method. From the perspective of time series, the overall coupling and coordination level of Sichuan Province is relatively low, and the comprehensive development level of health investment and economic growth system has lagged behind the resident health system;from the perspective of spatial distribution characteristics, in 2019, the coordinated development level of health investment resident health and economic growth coupling in western Sichuan, southern Sichuan, northern Sichuan, eastern Sichuan and northern Sichuan is in the primary coordination stage, but there is a lag in the development of the health investment system between western Sichuan and southern Sichuan, and there is a lag in the development of the economic growth system between northern Sichuan and eastern Sichuan. From the analysis of gray correlation degree, the main correlation factors are diverse. All in all, the overall coordination level of health investment, resident health and economic growth in Sichuan Province is relatively low, and in order to achieve its coordinated development, it is necessary to narrow regional differences, formulate coordinated development strategies according to local conditions, and improve the overall coordination level.展开更多
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di...Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.展开更多
The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchor...The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchoring force.Alternating dry and wet(D-W)conditions have a significant effect on deformation of rock.The anchoring system is composed of anchoring components and rock mass,and thus rock deformation has a significant impact on the loss of anchoring force.Quantifying rock deformation under the effects of D-W cycles is a prerequisite to understanding the factors that influence loss of anchoring force in anchor bolts.In this study,we designed an anchoring device that enabled real-time monitoring of the variation in strain during D-W periods and rock testing.Nuclear magnetic resonance(NMR)measurements showed that under D-W conditions,the increment in porosity was smaller for prestressed rock than unstressed rock.The trends of prestress loss and strain variation are consistent,which can be divided into three characteristic intervals:rapid attenuation stage,slow attenuation stage and relatively stable stage.At the same stress level,the rate of stress loss and strain for the soaking specimen was the highest,while that of the dried specimen was the lowest.In the same D-W cycling conditions,the greater the prestress,the smaller the strain loss rate of the rock,especially under soaking conditions.The characteristics of pore structure and physical mechanical parameters indicated that prestress could effectively suppress damage caused by erosion related to D-W cycles.The study reveals the fluctuation behavior of rock strain and prestress loss under D-W conditions,providing a reference for effectively controlling anchoring loss and ideas for inventing new anchoring components.展开更多
For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quanti...For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.展开更多
This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious ...This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
Based on the surface energy balance model which is widely used abroad, a temperature and humidity field coupling model of conservatory soil without crop vegetation in full illumination was established. Considering the...Based on the surface energy balance model which is widely used abroad, a temperature and humidity field coupling model of conservatory soil without crop vegetation in full illumination was established. Considering the relatively closed environment in conservatory, weak solar radiation and little surface evaporation of soil, the daily variation of water content in different soil layers may be neglected, then the temperature and humidity field coupling model was simplified to a one-dimensional thermal diffusion model. The simplified model and the temperature and humidity field coupling model adopted the same computational method of soil physical parameters and discrete format of heat diffusion differential equations, and were applied to the continuous simulation of temperature field in conservatory soil without crop vegetation in full illumination. Through the comparison between simulation results and experimental data, the precision of the simplified model was verified. The typical rule of soil heat flux variation in a 24 h cycle was also obtained.展开更多
The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydrau...The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.展开更多
In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidat...In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.展开更多
A new Lagrangian—Eulerian coupling model system is developed to study regional air quality. The system consists of mesoscale dynamical meteorological model (MM), Monte—Carlo model (MCM), parameterized model on plane...A new Lagrangian—Eulerian coupling model system is developed to study regional air quality. The system consists of mesoscale dynamical meteorological model (MM), Monte—Carlo model (MCM), parameterized model on planetary boundary layer (PBL) turbulent statistics, dry and wet removal model, and Eulerian nonlinear chemical model (ENCM). The physical, chemical and biological processes on air pollutants are considered comprehensively. 3—D distribution laws tor acidic gaseous pollutants (SO2 and NOx) emitted by Thai Mae Moh Power Plant and the secondary pollutants are studied in detail. The results simulated by the coupling model system are in good agreement with observational concentration data. Key words MM - MCM - ENCM - Coupling model system The authors wish to express their thanks to Prof. Zeng Q. C. for his support to this research and to Dr. Han Z. W. and Zhang M. G. for their help in programming and numerical calculation of IAP, Chinese Academy of Sciences. Thanks are also due to NSTD and EGAT in Thailand for supporting this research.展开更多
A minimal system-plus-reservoir model yielding a nonergodic Langevin equation is proposed, which originates from the cubic-spectral density of environmental oscillators and momentum-dependent coupling. This model allo...A minimal system-plus-reservoir model yielding a nonergodic Langevin equation is proposed, which originates from the cubic-spectral density of environmental oscillators and momentum-dependent coupling. This model allows ballistic diffusion and classical localization simultaneously, in which the fluctuation-dissipation relation is still satisfied but the Khinchin theorem is broken. The asymptotical equilibrium for a nonergodic system requires the initial thermal equilibrium, however, when the system starts from nonthermal conditions, it does not approach the equilibration even though a nonlinear potential is used to bound the particle, this can be confirmed by the zerotb law of thermodynamics. In the dynamics of Brownian localization, due to the memory damping function inducing a constant term, our results show that the stationary distribution of the system depends on its initial preparation of coordinate rather than momentum. The coupled oscillator chain with a fixed end boundary acts as a heat bath, which has long been used in studies of collinear atom/solid-surface scattering and lattice vibration, we investigate this problem from the viewpoint of nonergodicity.展开更多
K^- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation ...K^- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation of state (EOS) solved self-consistently, we discuss the properties of neutron stars. We find that the EOS of pure hadron matter with condensed K- phase should be ruled out by the redshift for star EX00748-676, while EOS containing unpaired quark matter phase with B1/4 being about 180 MeV could be consistent with both this observation and the best measured mass of star PSR 1913 + 16. But if the recent inferred massive star among Terzan 5 with M 〉 1.68M is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out.展开更多
A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond wi...A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond with wavelet transform sequence was established, finally wavelet random coupling model was obtained by wavelet reconstruction algorithm. Then, according to the rainfall data in crop growth period of Farm Chahayang from 1956 to 2008, the wavelet random coupling model was established to fit the model prediction test. The results showed that the prediction and fitting accuracy of the model was high, the model could reflect the rainfall variation regulation in the region, and it was a practical prediction model. It was very important for us to determine reasonably irrigation schedule and to use efficiency coefficient of precipitation resource.展开更多
This study is concerned with developing a two-dimensional two-phase model that simulate the movement of non-aqueous phase liquid (NAPL) in a fracture-rock matrix system. The intrinsic permeability and the fracture ape...This study is concerned with developing a two-dimensional two-phase model that simulate the movement of non-aqueous phase liquid (NAPL) in a fracture-rock matrix system. The intrinsic permeability and the fracture aperture are represented in the model via its KarhunenLoeve expansion. Other parameters and the nodal unknowns, water saturations and water pressures, are represented by their stochastic spectral expansions. The errors resulting from truncation of Karhunen - Loeve and polynomial chaos expansions to a finite number of terms are analyzed. The eigenvalues of stochastic process is found out for any point in the special domain of the problem at any instant in time.展开更多
High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the...High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.展开更多
Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration a...Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment.展开更多
The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled m...The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.展开更多
Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction....Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.展开更多
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr...In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
文摘We should calculate the coupling degree of medical investment, resident health and economic growth in Sichuan Province, and make clear the coordinated development of the aforementioned three factors. In that, the government was able to formulate policies that feature the positive interaction and coordinated development of regional medical investment, health and economy. Methods on index system for the evaluation of health investment, resident health and economic growth were constructed, and the coupling and coordination degree of the three systems were empirically studied based on the entropy weight method, the coupling coordination model and the gray correlation method. From the perspective of time series, the overall coupling and coordination level of Sichuan Province is relatively low, and the comprehensive development level of health investment and economic growth system has lagged behind the resident health system;from the perspective of spatial distribution characteristics, in 2019, the coordinated development level of health investment resident health and economic growth coupling in western Sichuan, southern Sichuan, northern Sichuan, eastern Sichuan and northern Sichuan is in the primary coordination stage, but there is a lag in the development of the health investment system between western Sichuan and southern Sichuan, and there is a lag in the development of the economic growth system between northern Sichuan and eastern Sichuan. From the analysis of gray correlation degree, the main correlation factors are diverse. All in all, the overall coordination level of health investment, resident health and economic growth in Sichuan Province is relatively low, and in order to achieve its coordinated development, it is necessary to narrow regional differences, formulate coordinated development strategies according to local conditions, and improve the overall coordination level.
基金the National Key R&D Program of China(No.2019YFB1504102).
文摘Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs.
基金This work was supported by National Natural Science Foundation of China(Nos.52164001,52064006 and 52004072)the Science and Technology Support Project of Guizhou(Nos.[2020]4Y044),[2021]N404 and[2021]N511)+2 种基金the Cultivation Program of Guizhou University([2020]No.1)the Talents of Guizhou University(No.201901)the Special Research Funds of Guizhou University(Nos.201903,202011 and 202012).
文摘The loss of anchoring force is one of the problems to be solved urgently.The anchorage loss is a key factor causing the failure of anchoring engineering,so it is crucial to study the time-dependent variation of anchoring force.Alternating dry and wet(D-W)conditions have a significant effect on deformation of rock.The anchoring system is composed of anchoring components and rock mass,and thus rock deformation has a significant impact on the loss of anchoring force.Quantifying rock deformation under the effects of D-W cycles is a prerequisite to understanding the factors that influence loss of anchoring force in anchor bolts.In this study,we designed an anchoring device that enabled real-time monitoring of the variation in strain during D-W periods and rock testing.Nuclear magnetic resonance(NMR)measurements showed that under D-W conditions,the increment in porosity was smaller for prestressed rock than unstressed rock.The trends of prestress loss and strain variation are consistent,which can be divided into three characteristic intervals:rapid attenuation stage,slow attenuation stage and relatively stable stage.At the same stress level,the rate of stress loss and strain for the soaking specimen was the highest,while that of the dried specimen was the lowest.In the same D-W cycling conditions,the greater the prestress,the smaller the strain loss rate of the rock,especially under soaking conditions.The characteristics of pore structure and physical mechanical parameters indicated that prestress could effectively suppress damage caused by erosion related to D-W cycles.The study reveals the fluctuation behavior of rock strain and prestress loss under D-W conditions,providing a reference for effectively controlling anchoring loss and ideas for inventing new anchoring components.
基金Supported by the National Defense Industrial Technology Development Program of China~~
文摘For the feature of complex weapon manufacturing on internet,a coupling model is proposed.By using the model,the correlation between manufacturing cells in an extended manufacturing organization can be evaluated quantitatively,so an appropriate control plan is determined.A strategy to improve and reduce the coupling relationship of the organization is studied.A correlation matrix of extended tasks is built to analyze the relationship between sub-tasks and manufacturing resources.An optimization method for manufacturing resource configuration is presented based on the coupling model.Finally,a software system for analyzing coupling model about manufacturing organization on internet is developed,and the result shows that the coupling model is effective.
基金NationalNaturalScience Emphases Foundation ofChina,No.40335049NationalNaturalScience Foundation ofChina,No.40471059
文摘This paper, taking Hexi Corridor as an example, analyzes the altemating intimidation and the dynamic evolving relation between urbanization and eco-environment in arid area of West China. We argue that the harmonious development system of the urbanization and eco-environment would go through four phases: rudimentary symbiotic phase, harmonious developmental phase, utmost increasing phase and spiral type rising phase. Throughout the four phases, the elements of the system would influence each other, coerce each other, and complete the spiral type rising process from low-grade symbiosis to high-grade harmony together. The study on Hexi Corridor shows that the urbanization level in Hexi Corridor has increased gradually from 1985 to 2003 accompanied with the fluctuations of eco-environment state. The response of eco-environment to urbanization has been evident, but lagged behind the urbanization course. At present, the harmonious development system in Hexi Corridor was in its harmonious developmental phase. However, the coupling degree has increased quickly and approached 90 yet, which is signaling that the system is about to enter the utmost increasing phase, and the ecological crisis will enter the latent period. We have found that the coupling degree can well reflect the interactive coercing and dynamic evolving situation between urbanization and eco-environment in Hexi Corridor. From the temporal change of the coupling degree, it can be concluded that urbanization sometimes needs to pay a certain cost for the damage of the eco-environment in its initial stages, but as the urbanization continues, the state of the eco-environment would be meliorated.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
文摘Based on the surface energy balance model which is widely used abroad, a temperature and humidity field coupling model of conservatory soil without crop vegetation in full illumination was established. Considering the relatively closed environment in conservatory, weak solar radiation and little surface evaporation of soil, the daily variation of water content in different soil layers may be neglected, then the temperature and humidity field coupling model was simplified to a one-dimensional thermal diffusion model. The simplified model and the temperature and humidity field coupling model adopted the same computational method of soil physical parameters and discrete format of heat diffusion differential equations, and were applied to the continuous simulation of temperature field in conservatory soil without crop vegetation in full illumination. Through the comparison between simulation results and experimental data, the precision of the simplified model was verified. The typical rule of soil heat flux variation in a 24 h cycle was also obtained.
基金Project(50139030) supported by the National Natural Science Foundation of ChinaProject(501072) supported by the Scientific Research Foundation for the Returned Overseas Scholars of the Ministry of Education of China
文摘The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.
文摘In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.
文摘A new Lagrangian—Eulerian coupling model system is developed to study regional air quality. The system consists of mesoscale dynamical meteorological model (MM), Monte—Carlo model (MCM), parameterized model on planetary boundary layer (PBL) turbulent statistics, dry and wet removal model, and Eulerian nonlinear chemical model (ENCM). The physical, chemical and biological processes on air pollutants are considered comprehensively. 3—D distribution laws tor acidic gaseous pollutants (SO2 and NOx) emitted by Thai Mae Moh Power Plant and the secondary pollutants are studied in detail. The results simulated by the coupling model system are in good agreement with observational concentration data. Key words MM - MCM - ENCM - Coupling model system The authors wish to express their thanks to Prof. Zeng Q. C. for his support to this research and to Dr. Han Z. W. and Zhang M. G. for their help in programming and numerical calculation of IAP, Chinese Academy of Sciences. Thanks are also due to NSTD and EGAT in Thailand for supporting this research.
基金supported by the National Natural Science Foundation of China (Grant No. 11175021)
文摘A minimal system-plus-reservoir model yielding a nonergodic Langevin equation is proposed, which originates from the cubic-spectral density of environmental oscillators and momentum-dependent coupling. This model allows ballistic diffusion and classical localization simultaneously, in which the fluctuation-dissipation relation is still satisfied but the Khinchin theorem is broken. The asymptotical equilibrium for a nonergodic system requires the initial thermal equilibrium, however, when the system starts from nonthermal conditions, it does not approach the equilibration even though a nonlinear potential is used to bound the particle, this can be confirmed by the zerotb law of thermodynamics. In the dynamics of Brownian localization, due to the memory damping function inducing a constant term, our results show that the stationary distribution of the system depends on its initial preparation of coordinate rather than momentum. The coupled oscillator chain with a fixed end boundary acts as a heat bath, which has long been used in studies of collinear atom/solid-surface scattering and lattice vibration, we investigate this problem from the viewpoint of nonergodicity.
基金National Natural Science Foundation of China under Grant Nos.10305001,10475002,and 10435080
文摘K^- condensation and quark deconfinement phase transitions in neutron stars are investigated. We use the modified quark-meson coupling model for hadronic phase and the MIT bag model for quark phase. With the equation of state (EOS) solved self-consistently, we discuss the properties of neutron stars. We find that the EOS of pure hadron matter with condensed K- phase should be ruled out by the redshift for star EX00748-676, while EOS containing unpaired quark matter phase with B1/4 being about 180 MeV could be consistent with both this observation and the best measured mass of star PSR 1913 + 16. But if the recent inferred massive star among Terzan 5 with M 〉 1.68M is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out.
基金Supported by Doctoral Foundation Program of Northeast Agricultural University (E090202)Science and Technology Research Program of Educational Committee of Heilongjiang Province, China (11551044)
文摘A Trous algorithm of wavelet transform was used to decompose wavelet signal, and the cross-correlation analysis was used to analyze the sequence of each wavelet transform, and then the mathematical model correspond with wavelet transform sequence was established, finally wavelet random coupling model was obtained by wavelet reconstruction algorithm. Then, according to the rainfall data in crop growth period of Farm Chahayang from 1956 to 2008, the wavelet random coupling model was established to fit the model prediction test. The results showed that the prediction and fitting accuracy of the model was high, the model could reflect the rainfall variation regulation in the region, and it was a practical prediction model. It was very important for us to determine reasonably irrigation schedule and to use efficiency coefficient of precipitation resource.
文摘This study is concerned with developing a two-dimensional two-phase model that simulate the movement of non-aqueous phase liquid (NAPL) in a fracture-rock matrix system. The intrinsic permeability and the fracture aperture are represented in the model via its KarhunenLoeve expansion. Other parameters and the nodal unknowns, water saturations and water pressures, are represented by their stochastic spectral expansions. The errors resulting from truncation of Karhunen - Loeve and polynomial chaos expansions to a finite number of terms are analyzed. The eigenvalues of stochastic process is found out for any point in the special domain of the problem at any instant in time.
文摘High performance electromechanical equipment is widely used in various fields, such as national defense, industry and so on [ 1]. In addition, the technical level of high performance electromechanical equipment is the embodiment of the national level of science and technology.
基金supported by the National Key R&D Program of China(No.2020YFB2007700)the National Natural Science Foundation of China(Nos.11790282,12032017,12002221,and 11872256)+1 种基金the S&T Program of Hebei Province of China(No.20310803D)the Natural Science Foundation of Hebei Province of China(No.A2020210028)。
文摘Based on Newton’s second law and the thermal network method,a mechanical thermal coupling model of the bearing rotor system of high-speed trains is established to study the interaction between the bearing vibration and temperature.The influence of lubrication on the vibration and temperature characteristics of the system is considered in the model,and the real-time relationship between them is built up by using the transient temperature field model.After considering the lubrication,the bearing outer ring vibration acceleration and node temperature considering grease are lower,which shows the necessity of adding the lubrication model.The corresponding experiments for characteristics of vibration and temperature of the model are respectively conducted.In the envelope spectrum obtained from the simulation signal and the experimental signal,the frequency values corresponding to the peaks are close to the theoretical calculation results,and the error is very small.In the three stages of the temperature characteristic experiment,the node temperature change of the simulation model is consistent with the experiment.The good agreement between simulation and experiments proves the effectiveness of the model.By studying the influence of the bearing angular and fault size on the system node temperature,as well as the change law of bearing lubrication characteristics and temperature,it is found that the worse the working condition is,the higher the temperature is.When the ambient temperature is low,the viscosity of grease increases,and the oil film becomes thicker,which increases the sliding probability of the rolling element,thus affecting the normal operation of the bearing,which explains the phenomenon of frequent bearing faults of high-speed trains in the low-temperature area of Northeast China.Further analysis shows that faults often occur in the early stage of train operation in the low-temperature environment.
基金supported by the National Natural Science Foundation of China(41176073)
文摘The wave-seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one- way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave-seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.
基金supported by the National Natural Science Foundation of China(No.62173281)the Natural Science Foundation of Sichuan Province(No.23ZDYF0734 and No.2023NSFSC1436)the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(No.18kftk03).
文摘Monitoring various internal parameters plays a core role in ensuring the safety of lithium-ion batteries in power supply applications.It also influences the sustainability effect and online state of charge prediction.An improved multiple feature-electrochemical thermal coupling modeling method is proposed considering low-temperature performance degradation for the complete characteristic expression of multi-dimensional information.This is to obtain the parameter influence mechanism with a multi-variable coupling relationship.An optimized decoupled deviation strategy is constructed for accurate state of charge prediction with real-time correction of time-varying current and temperature effects.The innovative decoupling method is combined with the functional relationships of state of charge and open-circuit voltage to capture energy management ef-fectively.Then,an adaptive equivalent-prediction model is constructed using the state-space equation and iterative feedback correction,making the proposed model adaptive to fractional calculation.The maximum state of charge estimation errors of the proposed method are 4.57% and 0.223% under the Beijing bus dynamic stress test and dynamic stress test conditions,respectively.The improved multiple feature-electrochemical thermal coupling modeling realizes the effective correction of the current and temperature variations with noise influencing coefficient,and provides an efficient state of charge prediction method adaptive to complex conditions.
文摘In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.