To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
为了提高小口径穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲(透明装甲)的仿真分析精度,本文将传统的FEM(finite element method)-SPH(smooth particle hydrodynamics)耦合计算模型中穿甲燃烧弹弹芯的有限元模型和JC(Johnson-Cook)材料模...为了提高小口径穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲(透明装甲)的仿真分析精度,本文将传统的FEM(finite element method)-SPH(smooth particle hydrodynamics)耦合计算模型中穿甲燃烧弹弹芯的有限元模型和JC(Johnson-Cook)材料模型分别替换为SPH模型和JH2(Johnson-Holmquist-ceramics)材料模型,提出了新型FEM-SPH耦合计算模型。研究表明,新型FEM-SPH耦合计算模型可以有效模拟弹芯碎裂现象,减少SPH粒子和有限元耦合计算量,进而显著提高仿真模型的计算精度和计算效率,并给出了新型FEM-SPH耦合计算模型的有限元/粒子尺度和建模尺寸的优选结果。展开更多
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
文摘为了提高小口径穿甲燃烧弹侵彻陶瓷复合装甲和玻璃复合装甲(透明装甲)的仿真分析精度,本文将传统的FEM(finite element method)-SPH(smooth particle hydrodynamics)耦合计算模型中穿甲燃烧弹弹芯的有限元模型和JC(Johnson-Cook)材料模型分别替换为SPH模型和JH2(Johnson-Holmquist-ceramics)材料模型,提出了新型FEM-SPH耦合计算模型。研究表明,新型FEM-SPH耦合计算模型可以有效模拟弹芯碎裂现象,减少SPH粒子和有限元耦合计算量,进而显著提高仿真模型的计算精度和计算效率,并给出了新型FEM-SPH耦合计算模型的有限元/粒子尺度和建模尺寸的优选结果。