For a long time,seasonal drought occurs frequently in Southwest China,and the management of water and fertilizer in kiwifruit orchards has no quantitative standards,which seriously affects the yield and quality of kiw...For a long time,seasonal drought occurs frequently in Southwest China,and the management of water and fertilizer in kiwifruit orchards has no quantitative standards,which seriously affects the yield and quality of kiwifruit.Therefore,the effects of water and fertilizer deficit regulation with drip irrigation(WFDRDI)on the quality of kiwifruit at different growth stages were explored to achieve water and fertilizer saving,and green and efficient production of kiwifruit.We select‘Jin Yan'kiwifruit and set two water deficit levels(W_(D20%)and W_(D40%))and three fertilizer deficit levels(F_(D15%),F_(D30%)and F_(D45%))at bud burst to leafing stage(stageⅠ),flowering to fruit set stage(stageⅡ),fruit expansion stage(stageⅢ)and fruit maturation stage(stageⅣ),respectively,with a full irrigation and fertilization as the control treatment(CK)in 2017and 2018.Results showed that the WFDRDI at stageⅡandⅢhad significant effect on fruit physical quality of kiwifruit,specifically,theⅢ-WD40%F_(D30%)andⅢ-W_(D20%)F_(D45%)treatments significantly increased fruit firmness by 13.62 and 15.59%(P<0.05),respectively;theⅡ-W_(D40%)F_(D15%)andⅢ-W_(D40%)F_(D15%)treatments significantly increased dry matter by 8.19 and 6.47%(P<0.05),respectively;theⅢ-W_(D20%)F_(D15%)treatment significantly increased single fruit weight and fruit volume by 9.33 and 12.65%(P<0.05),respectively;theⅡ-W_(D20%)F_(D15%)treatment significantly increased fruit water content by 1.99%(P<0.05).The WFDRDI had an obvious effect on fruit chemical quality of kiwifruit.TheⅢ-W_(D20%)F_(D45%),Ⅳ-W_(D40%)F_(D15%)andⅣ-W_(D20%)F_(D30%)treatments significantly increased vitamin C(Vc)content by 69.96,36.96 and 34.31%(P<0.05),respectively;theⅢ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments significantly increased total soluble solid(TSS)content by 3.79 and 17.05%(P<0.05),respectively,and significantly increased soluble sugar content by 28.61 and 34.79%(P<0.05),respectively;the contents of fructose,glucose and sucrose also had a significantly increasing trend,which was increased significantly by 5.58–19.63%,40.55–60.36%and 54.03–54.92%in theⅢ-WD40%F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments(P<0.05),respectively;sugar–acid ratio was increased significantly in theⅣ-W_(D40%)F_(D15%)treatment by 64.65%(P<0.05).The degree and duration of water and fertilizer deficit had a comprehensive effect on fruit quality of kiwifruit.The WFDRDI at stageⅡandⅢcontribute to improving fruit physical quality,and the threshold of water and fertilizer deficit were 20 and 15%,respectively;stageⅢandⅣare the critical periods for improving fruit chemical quality by water and fertilizer coupling effect,and the threshold of water and fertilizer deficit were 40 and 15%,respectively.Therefore,aiming at precise water and fertilizer saving,theⅠ-W_(D20%)F_(D30%),Ⅱ-W_(D40%)F_(D15%),Ⅲ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments under WFDRDI during the whole growth period of kiwifruit were the best mode to improve quality and production of kiwifruit.展开更多
The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and i...The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and its component factor indexes,pre-sowing preparation,sowing,post-sowing management,field management at the seedling stage,integrated management of water and fertilizer for target yield of maize,rational application of micro-fertilizer,comprehensive prevention and control of diseases and pests,timely harvest,etc.,in order to provide a reference for agricultural technicians,maize farmers and maize industry development in northern Xinjiang.展开更多
How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical mode...How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content.展开更多
Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertili...Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.展开更多
This paper summarizes the research progress and major achievements of the coupling effect of water and fertilizer on grape cultivation in China and abroad in recent years,emphatically analyzes the application status a...This paper summarizes the research progress and major achievements of the coupling effect of water and fertilizer on grape cultivation in China and abroad in recent years,emphatically analyzes the application status and some problems of the coupling effect of water and fertilizer on double-cropping grape cultivation mode in Guangxi Zhuang Autonomous Region,discusses the key problems to be further resolved,and finally makes the relevant recommendations.展开更多
The paper was to study the effects of seeding rate, water and fertilizer ( N, P, K) coupling on grass yield of forage millet Jigu No. 18 (Setaria itlica). A quadratic regression otthogonal rotation combination wit...The paper was to study the effects of seeding rate, water and fertilizer ( N, P, K) coupling on grass yield of forage millet Jigu No. 18 (Setaria itlica). A quadratic regression otthogonal rotation combination with five factors was designed in pot experiment. The mathematical model between hay yield of forage millet (Y) and soil moisture content ( x1 ), N fertilizer (x2 ), P fertilizer (x3 ), K fertilizer (x4) and seeding rate (x5 ) was established to simulate optimization. The results showed that moisture content, seeding rate, P fertilizer and K fertilizer had important effects on hay yield. Soil moisture content had the biggest impact on yield, followed by seeding rate, P and K fertilizer. The coupling effects of various factors successively were moisture content / seeding rate 〉 K fertil- izer/seeding rate 〉 N / P fertilizer 〉 soil moisture/N fertilizer 〉 soil moisture/ P fertilizer. Moreover, the mathematical model, Y = 20 543. 756 - 565. 570xI -39. 942x2 -23. 102x3 -38. 470x4 - 151. 877x5 + 1. 052x^x2 + 1. 604xIx3 + 12. 953xt x5 - 0. 173x2x3 + 0. 737x4x5 - 2. 292x5^2, was established. The optimum soil moisture and seeding rate were determined as 10% andl5 kg/hm2, respectively. In this scheme, the hay yield was 14 037. 151 0 kg/hm^2 and the economic benefit was 13 887.15 yuan/hm^2 ; the income was increased by 23.68% ( 3 288.98 yuan/hm^2 ) compared to the optimal combination in the test. The results provided a theoretical basis and technical support for forage millet production in Hebei Province.展开更多
To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rot...To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rotation combination with five factors was designed in pot experiment. Results showed that both water and phosphate fertilizer had important impacts on water use efficiency,in which water had the maximum impact,followed by phosphate fertilizer,and nitrogen fertilizer,potassium fertilizer and sowing rate all had no obvious impact. Significant item of sowing rate,water and fertilizer coupling had the below sequence: potassium fertilizer + sowing rate > nitrogen fertilizer + phosphate fertilizer > water + phosphate fertilizer > water + sowing rate > water + potassium fertilizer,and other items had no obvious impact. Mathematical model was established: y = 44. 26- 1. 311x1- 2. 298x2- 3. 682x3- 6. 401x4- 34. 540x5+ 0. 273x1x3+ 0. 118x1x4+ 0. 843x1x5- 1. 948x2x3+ 6. 631x4x5. The optimal scheme taking economic benefit as the examining index was cleared,that is,soil water content maintained 10%,and sowing rate of fodder millet was 15 kg / hm2. By the scheme,water use efficiency was 26. 24 g / kg,and hay yield was13980. 90 kg / hm2,with economic benefit of 13830. 90 yuan/hm2,which was 3063. 73 yuan/hm2 more than the optimized combination with the highest hay yield,with increase magnitude of 22. 15%,and was 6215. 15 yuan / hm2 more than the optimized combination with the highest water use efficiency,with increase magnitude of 44. 94%. The research could provide theoretic basis and technical support for production practice of fodder millet grown in autumn fallow field.展开更多
Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation ...Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation with muddy water and fertilizer.The relationship between the single-line interference infiltration parameters,the sand content,the wetting front movement distances,and the sand content were all established.The model of the cumulative infiltration volume of per unit film pore area,the vertical and horizontal wetting front movement distance of the free surface,and the wetting front movement distance of the interference center with sand content and infiltration time were proposed.Reveal the law of the change of soil water content and the distribution of NO_(3)^(-)-N content based on different muddy water sand content.The results indicate that at the same infiltration time,as the muddy water sand content increases,the cumulative infiltration volume per unit pore area decreases.The infiltration index of the free infiltration and the single-line interference vary little when the sand content increases,mainly are around 0.64 and 0.58.The relationship between infiltration parameters a,b and the sand content is linear function.At the same location,the more the sand content,the smaller the wetting front movement distance in free surface and the single-line interference surface,the less the NO_(3)^(-)-N content.展开更多
[Objective] The aim was to study the coupling effect of water and phosphate on economic traits of sugarcane. [Method] Taking sugarcane variety ROC22 as tested material,coupling effects of different levels of water sup...[Objective] The aim was to study the coupling effect of water and phosphate on economic traits of sugarcane. [Method] Taking sugarcane variety ROC22 as tested material,coupling effects of different levels of water supply quantity and different levels of phosphorus fertilizer on the yield and quality of sugarcane were studied. Among them,water supply quantity had 3 levels,that was,the water supply quantity per 10 days from the early tillering stage of sugarcane to the end of elongation was 199.5 m3/hm2 (A1),400.5 m3/hm2 (A2) and 600.0 m3/hm2 (A3),respectively; Phosphorus fertilizer as basic fertilizer had 4 levels:P2O5 0 kg/hm2 (B1),120 kg/hm2 (B2),240 kg/hm2 (B3) and 360 kg/hm2 (B4). [Result] Treatment A3B2 in water-fertilizer coupling was more suitable to improve economic traits of sugarcane. [Conclusion] The research results provide theoretical basis for the efficient utilization of water and phosphorus fertilizer in production of Guangxi sugarcane and the cultivation of high-yield and high-glucose sugarcane.展开更多
Drought stress (DS) is an important limiting factor for crop growth and production in some regions of the world. Limitation in water availability precludes optimal irrigation in some production regions. Therefore, inv...Drought stress (DS) is an important limiting factor for crop growth and production in some regions of the world. Limitation in water availability precludes optimal irrigation in some production regions. Therefore, investigations on the interaction of other factors to mitigate the DS to varying degree are important. Two field experiments were conducted in the experimental farm of the National Research Centre, Shalakan, Kalubia Governorate, Egypt, during 2004 and 2005 summer seasons to evaluate the interactions between N, P, K rates and optimal vs. deficit irrigation regimes on biomass yield as well as water use efficiency (WUE) of forage sorghum. Omission of the 4th irrigation significantly decreased the biomass of sorghum c.v. Pioneer, as compared to that of the plants receiving optimal irrigation or subject to omission of the 2nd irrigation. The biomass yield increased with an increase in NPK fertilizer rates. Plant height and leaf area also decreased by omitting the 2nd irrigation as compared to that of the plants under optimal irrigation, and further declined with omission of the 4th irrigation. The biomass of the plants (dry weight basis) that received the high N, P, K rates was greater by 26%, 29%, and 35% as compared to that of the plants that received no N, P, K fertilizers, under optimal irrigation, omission of the 2nd, and omission of the 4th irrigation, respectively. The corresponding increases in water use efficiency (based on fresh weight yield) were 37%, 42%, and 55%.展开更多
Shuangqiao Countryside of Neijiang City in hilly ground area in the midland of Sichuan Province was chosen as the study geographic area to survey and analyze the content distribution characteristics of the Cd in the i...Shuangqiao Countryside of Neijiang City in hilly ground area in the midland of Sichuan Province was chosen as the study geographic area to survey and analyze the content distribution characteristics of the Cd in the irrigation water,ground water mud,surface layer cultivated soil,profile soil and the fertilizer which were often used in the locality,and in different crops set earth,fructification as well. The results showed that the content of Cd in the irrigation and ground water mud respectively comply with the national agriculture use irrigation standard and the contamination control standard value in agriculture use mud ( GB4284-84) respectively. The average contents in the surface cultivated soil and each layer of soil profile are all above the background level of Chengdu economic region ( 44% ) ,referring to a large scale pollution risk. The average value of Cd element in fertilizer was 1. 81 μg / g,which was higher than the third class standard of national soil environment quality; The average content of Cd element in the crops' set earth was 0. 410-0. 439 μg / g,which was higher than the second class standard of national soil environment quality and there was a measure of cumulation; The average values of Cd in crops' fructificationwas all below the primary standard of national soil environment quality,and the bioamplification coefficient sorting was CF( Cdpeanut) > CF( Cdcitrus) > CF ( Cdrice) > CF( Cdcorn) . Irrigation water had little influence on the soil Cd pollution,where fertilizer using was closely related to the Cd pollution in the surface cultivated soil in the survey area and had a certain influence on the Cd cumulation in the crops. The sorption and enrichment of crops' set earth and fructification was obviously different.展开更多
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI)...The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.展开更多
The localised irrigation or drop by drop system is a technique which makes it possible to save water, because it ensures a balanced and efficient distribution of water and an effective fertilization. However, this fer...The localised irrigation or drop by drop system is a technique which makes it possible to save water, because it ensures a balanced and efficient distribution of water and an effective fertilization. However, this ferti-irrigation system is facing a number of problems hindering the agricultural development. The lack of uniformity of the localised irrigation was observed and found out that it is due to chemical clogging of drippers. Considering the complexity of the composition of the natural water used in micro-irrigation, we started our study by examining the effectiveness of the inhibitor on pure calco-carbonic water with 40°F, and then moved to explore the natural water of the agricultural region. The Legrand-Poirier-Leroy method allowed us to determine the position of the irrigation water compared to calco-carbonic balance. LCGE (abbreviation of “Laboratory of Chemistry and Environmental Engineering”) technique, based on the accelerated formation of calcium carbonate deposit under the effect of a degasification of studied water, enabled us to evaluate the scaling power of this water of irrigation either with or without inhibitor. The experimental results showed the following: in the case of pure calco-carbonic water with 40?F and of natural water, the addition respectively of 2 mg/L and 2.25 mg/L of phosphate fertilizer completely inhibits the precipitation of calcium carbonate under the conditions of the experiment.展开更多
[Objectives] This study was conducted to investigate the effects of irrigation and fertilization on population structure and yield of wheat.[Methods]With Shannong 29 as an experimental material,the effects of irrigati...[Objectives] This study was conducted to investigate the effects of irrigation and fertilization on population structure and yield of wheat.[Methods]With Shannong 29 as an experimental material,the effects of irrigation and fertilization on population,dry matter accumulation and yield of wheat were studied.[Results]Integrated water-saving irrigation and fertilization of ridged field was the best with the highest population,dry matter accumulation and yield of wheat.[Conclusions]This study provides a theoretical basis for high-yield and high-efficiency wheat production with saved water and fertilizers.展开更多
The total, soluble and insoluble oxalate contents of the small, large and cauline leaves and small and large stems of miner’s lettuce (Claytonia perfoliata ) plants which had been irrigated with tap water or a solubl...The total, soluble and insoluble oxalate contents of the small, large and cauline leaves and small and large stems of miner’s lettuce (Claytonia perfoliata ) plants which had been irrigated with tap water or a soluble fertilizer were extracted and measured using HPLC chromatography. Overall, all plant parts of miner’s lettuce analyzed contained high levels of total and soluble oxalates;however plants irrigated with fertilizer contained lower levels of oxalates compared with plants irrigated with water. On a dry matter basis, the small leaves contained higher levels of total oxalate when compared to the total oxalate in the large leaves. Soluble oxalate in the leaves of plants irrigated with water ranged from 2.6 to 7.5 mg/100g dry matter (DM) and was significantly higher (P < 0.05) than the leaves of the fertilizer-watered plants, which ranged from 1.8 to 2.8 mg/100g DM. The soluble oxalate in the small and large stems of the fertilizer-watered plants ranged from 1.20 to 1.5 mg/100g DM and was significantly lower (P < 0.05) than the water-treated small and large stems, which ranged from 3.75 to 4.4 mg/100g DM. It is recommended that the leaves of miner’s lettuce should be consumed in moderation.展开更多
Optimal use of water and fertilizers can enhance winter wheat yield and increase the efficiencies of water and fertilizer usage in dryland agricultural systems. In order to optimize water and nitrogen (N) management...Optimal use of water and fertilizers can enhance winter wheat yield and increase the efficiencies of water and fertilizer usage in dryland agricultural systems. In order to optimize water and nitrogen (N) management for winter wheat, we conducted field experiments from 2006 to 2008 at the Changwu Agro-ecological Experimental Station of the Chinese Academy of Sciences on the Loess Plateau, China. Regression models of wheat yield and evapotranspiration (ET) were established in this study to evaluate the water and fertilizer coupling effects and to determine the optimal coupling domain. The results showed that there was a positive effect of water and N fertilizer on crop yield, and optimal irrigation and N inputs can significantly increase the yield of winter wheat. In the drought year (2006-2007), the maximum yield (Yma~) of winter wheat was 9.211 t/hm2 for the treatment with 324 mm irriga- tion and 310 kg/hm2 N input, and the highest water use efficiency (WUE) of 16.335 kg/(hm2.mm) was achieved with 198 mm irrigation and 274 kg/hm2 N input. While in the normal year (2007-2008), the maximum winter wheat yield of 10.715 t/hm2 was achieved by applying 318 mm irrigation and 291 kg/hm2 N, and the highest WUE was 18.69 kg/(hm2.mm) with 107 mm irrigation and 256 kg/hm2 N input. Crop yield and ET response to irrigation and N inputs followed a quadratic and a line function, respectively. The optimal coupling domain was determined using the elas- ticity index (El) and its expression in the water-N dimensions, and was represented by an ellipse, such that the global maximum WUE (WUErnax) and Ymax values corresponded to the left and right end points of the long axis, respectively. Considering the aim to get the greatest profit in practice, the optimal coupling domain was represented by the lower half of the ellipse, with the Yma~ and WUE^ax on the two end points of the long axis. Overall, we found that the total amount of irrigation for winter wheat should not exceed 324 ram. In addition, our optimal coupling domain visually reflects the optimal range of water and N inputs for the maximum winter wheat yield on the Loess Plateau, and it may also provide a useful reference for identifying appropriate water and N inputs in agricultural applications.展开更多
This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) ...This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) Ulva lactuca (Easters-Scheldt, the Netherlands). Mechanical pressure at 10 bar of fresh seaweed fronds casu quo biomass in the laboratory delivered seaweed moisture which was analyzed by Inductively Coupled Plasma Spectroscopy (ICP)-techniques for heavy-metals = [HM], (Al, As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb & Zn). Three important observations were made: 1) The [HM] in the seaweed moisture is higher than in the surrounding seawater which directs to mechanism(s) of bio-accumulation;2) The accumulation factor [AF] is varying per metallic-cation with an overall trend for our four seaweeds and sampling locations for [HM] are: As & Co & Cu: 5000 - 10,000 μg/l;Ni & Zn: 3000 - 5000 μg/l;Cd: 2000 - 3000 μg/l;Cr: 1000 - 2000 μg/l;Al: 200 - 1000 μg/l;Mo & Pb & Fe: 0 - 200 μg/l range. 3) Seaweed moisture detected that [HM]: Pb & Zn & Fe—which all three could not be detected in the seawater—supports the view that seaweeds have a preference in their bio-accumulation mechanism for these three HM. Major conclusion is in general that “overall” for the macro-elements Ca, Fe, K, Mg, Mn, Na, P & S in the moisture of the four seaweed species the concentration is lower in the seaweed species, or equals the concentration, in comparison to the surrounding sea water. For the HM (Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb & Zn) the opposite is the case species and is the concentration “overall” higher in the seaweed species in comparison to the surrounding sea water. Further topics addressed include strategies of irrigation of the Sahara desert with the moisture out of seaweeds under conditions of low anthropogenic influences.展开更多
基金the National Natural Science Foundation of China(51779161 and 52279041)the National Funds for Distinguished Young Scientists of China(51922072)+1 种基金the Sichuan Science and Technology Program,China(2023YFN0024 and 2023NZZJ0015)the Key Development Project of the Chengdu Science and Technology Plan,China(2022-YF05-01008-SN)。
文摘For a long time,seasonal drought occurs frequently in Southwest China,and the management of water and fertilizer in kiwifruit orchards has no quantitative standards,which seriously affects the yield and quality of kiwifruit.Therefore,the effects of water and fertilizer deficit regulation with drip irrigation(WFDRDI)on the quality of kiwifruit at different growth stages were explored to achieve water and fertilizer saving,and green and efficient production of kiwifruit.We select‘Jin Yan'kiwifruit and set two water deficit levels(W_(D20%)and W_(D40%))and three fertilizer deficit levels(F_(D15%),F_(D30%)and F_(D45%))at bud burst to leafing stage(stageⅠ),flowering to fruit set stage(stageⅡ),fruit expansion stage(stageⅢ)and fruit maturation stage(stageⅣ),respectively,with a full irrigation and fertilization as the control treatment(CK)in 2017and 2018.Results showed that the WFDRDI at stageⅡandⅢhad significant effect on fruit physical quality of kiwifruit,specifically,theⅢ-WD40%F_(D30%)andⅢ-W_(D20%)F_(D45%)treatments significantly increased fruit firmness by 13.62 and 15.59%(P<0.05),respectively;theⅡ-W_(D40%)F_(D15%)andⅢ-W_(D40%)F_(D15%)treatments significantly increased dry matter by 8.19 and 6.47%(P<0.05),respectively;theⅢ-W_(D20%)F_(D15%)treatment significantly increased single fruit weight and fruit volume by 9.33 and 12.65%(P<0.05),respectively;theⅡ-W_(D20%)F_(D15%)treatment significantly increased fruit water content by 1.99%(P<0.05).The WFDRDI had an obvious effect on fruit chemical quality of kiwifruit.TheⅢ-W_(D20%)F_(D45%),Ⅳ-W_(D40%)F_(D15%)andⅣ-W_(D20%)F_(D30%)treatments significantly increased vitamin C(Vc)content by 69.96,36.96 and 34.31%(P<0.05),respectively;theⅢ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments significantly increased total soluble solid(TSS)content by 3.79 and 17.05%(P<0.05),respectively,and significantly increased soluble sugar content by 28.61 and 34.79%(P<0.05),respectively;the contents of fructose,glucose and sucrose also had a significantly increasing trend,which was increased significantly by 5.58–19.63%,40.55–60.36%and 54.03–54.92%in theⅢ-WD40%F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments(P<0.05),respectively;sugar–acid ratio was increased significantly in theⅣ-W_(D40%)F_(D15%)treatment by 64.65%(P<0.05).The degree and duration of water and fertilizer deficit had a comprehensive effect on fruit quality of kiwifruit.The WFDRDI at stageⅡandⅢcontribute to improving fruit physical quality,and the threshold of water and fertilizer deficit were 20 and 15%,respectively;stageⅢandⅣare the critical periods for improving fruit chemical quality by water and fertilizer coupling effect,and the threshold of water and fertilizer deficit were 40 and 15%,respectively.Therefore,aiming at precise water and fertilizer saving,theⅠ-W_(D20%)F_(D30%),Ⅱ-W_(D40%)F_(D15%),Ⅲ-W_(D40%)F_(D15%)andⅣ-W_(D40%)F_(D15%)treatments under WFDRDI during the whole growth period of kiwifruit were the best mode to improve quality and production of kiwifruit.
文摘The green high-yield and high-efficiency cultivation techniques of integrated management of water and fertilizer for maize under mulch drip irrigation are described from the aspects of high yield target of maize and its component factor indexes,pre-sowing preparation,sowing,post-sowing management,field management at the seedling stage,integrated management of water and fertilizer for target yield of maize,rational application of micro-fertilizer,comprehensive prevention and control of diseases and pests,timely harvest,etc.,in order to provide a reference for agricultural technicians,maize farmers and maize industry development in northern Xinjiang.
文摘How to improve the water use efficiency of rice in black soil regions was studied. The black soil region in paddy fields was chosen as the research object. The research showed the fertilizer coupling mathematical model with N,P,K,irrigation water( W) and water use efficiency( WUE),which was set up under the condition of controlled irrigation with quadratic D- 416 optimized saturation design. The results show that the decending order of single factor' s influence on the WUE was N,K,P and W. All the interactions between N&P,N&K,N&W,K&P,P&W and K&W on the WUE were raised initially,and when reached a certain value,they began to decline. The decending order of each interaction on the WUE was K&P,K&W,N&K,N&P,P&W and N&W. When the WUE was targeted within 1. 8- 2. 5 kg / km^3,an optimized proportion plan was obtained in the 95% confidence interval,i. e. N 87. 76- 103. 32 kg / hm^2,K_2 O 52. 37- 66. 53 kg / hm^2 and P_2O_536. 80- 46. 71 kg / hm^2. Furthermore,the late tillering of the soil moisture content was 70. 07%- 72. 57% of the saturated moisture content.
文摘Soybean cultivar Bei 92-28 was tested in this experiment in 2000 to study the coupling effect of water and ferilizer on soybean yield.The results showed that the effect of irrigation varied among the levels of fertilizer application,and vice versa;pods per plant,seeds per pod.and 100-seed weight had positive correlations with soybean yield,but the degrees of correlations of different treatments were various;LAI and dry matter accumulation could be significantly increased when watered and applied fertilizer with different levels,but high fertilizer application treatment didn't obtain the highest yield;watering could increase the absolute absorption amount of N,P,K in seeds,but the accumulation rates were various.
基金Supported by Special Funds for Bagui Scholars Construction ProjectSpecial Research Funds of Guangxi Academy of Agricultural Sciences(2015JZ30)+2 种基金National Key Technology R&D Program(2014BAD16B05)Scientific Research and Technological Development Project in Guangxi(14251007)Team Project of Guangxi Academy of Agricultural Sciences(2015YT82)
文摘This paper summarizes the research progress and major achievements of the coupling effect of water and fertilizer on grape cultivation in China and abroad in recent years,emphatically analyzes the application status and some problems of the coupling effect of water and fertilizer on double-cropping grape cultivation mode in Guangxi Zhuang Autonomous Region,discusses the key problems to be further resolved,and finally makes the relevant recommendations.
基金Special Fund for Agro-scientific Research in the Public Interest Research and Demonstration of Development and Utilization Technology of Forage Feed Resources in Pastoral Areas(20120304201)
文摘The paper was to study the effects of seeding rate, water and fertilizer ( N, P, K) coupling on grass yield of forage millet Jigu No. 18 (Setaria itlica). A quadratic regression otthogonal rotation combination with five factors was designed in pot experiment. The mathematical model between hay yield of forage millet (Y) and soil moisture content ( x1 ), N fertilizer (x2 ), P fertilizer (x3 ), K fertilizer (x4) and seeding rate (x5 ) was established to simulate optimization. The results showed that moisture content, seeding rate, P fertilizer and K fertilizer had important effects on hay yield. Soil moisture content had the biggest impact on yield, followed by seeding rate, P and K fertilizer. The coupling effects of various factors successively were moisture content / seeding rate 〉 K fertil- izer/seeding rate 〉 N / P fertilizer 〉 soil moisture/N fertilizer 〉 soil moisture/ P fertilizer. Moreover, the mathematical model, Y = 20 543. 756 - 565. 570xI -39. 942x2 -23. 102x3 -38. 470x4 - 151. 877x5 + 1. 052x^x2 + 1. 604xIx3 + 12. 953xt x5 - 0. 173x2x3 + 0. 737x4x5 - 2. 292x5^2, was established. The optimum soil moisture and seeding rate were determined as 10% andl5 kg/hm2, respectively. In this scheme, the hay yield was 14 037. 151 0 kg/hm^2 and the economic benefit was 13 887.15 yuan/hm^2 ; the income was increased by 23.68% ( 3 288.98 yuan/hm^2 ) compared to the optimal combination in the test. The results provided a theoretical basis and technical support for forage millet production in Hebei Province.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(20120304201)
文摘To study the influence of sowing rate,water and fertilizer( N,P and K) coupling on water use efficiency of fodder millet grown in autumn fallow field,taking " Jigu 18" as the tested material,a orthogonal rotation combination with five factors was designed in pot experiment. Results showed that both water and phosphate fertilizer had important impacts on water use efficiency,in which water had the maximum impact,followed by phosphate fertilizer,and nitrogen fertilizer,potassium fertilizer and sowing rate all had no obvious impact. Significant item of sowing rate,water and fertilizer coupling had the below sequence: potassium fertilizer + sowing rate > nitrogen fertilizer + phosphate fertilizer > water + phosphate fertilizer > water + sowing rate > water + potassium fertilizer,and other items had no obvious impact. Mathematical model was established: y = 44. 26- 1. 311x1- 2. 298x2- 3. 682x3- 6. 401x4- 34. 540x5+ 0. 273x1x3+ 0. 118x1x4+ 0. 843x1x5- 1. 948x2x3+ 6. 631x4x5. The optimal scheme taking economic benefit as the examining index was cleared,that is,soil water content maintained 10%,and sowing rate of fodder millet was 15 kg / hm2. By the scheme,water use efficiency was 26. 24 g / kg,and hay yield was13980. 90 kg / hm2,with economic benefit of 13830. 90 yuan/hm2,which was 3063. 73 yuan/hm2 more than the optimized combination with the highest hay yield,with increase magnitude of 22. 15%,and was 6215. 15 yuan / hm2 more than the optimized combination with the highest water use efficiency,with increase magnitude of 44. 94%. The research could provide theoretic basis and technical support for production practice of fodder millet grown in autumn fallow field.
基金National Key R&D Program of China(2016YFC0400204)National Natural Science Foundation of China(51479161,51279157,51779205)。
文摘Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation with muddy water and fertilizer.The relationship between the single-line interference infiltration parameters,the sand content,the wetting front movement distances,and the sand content were all established.The model of the cumulative infiltration volume of per unit film pore area,the vertical and horizontal wetting front movement distance of the free surface,and the wetting front movement distance of the interference center with sand content and infiltration time were proposed.Reveal the law of the change of soil water content and the distribution of NO_(3)^(-)-N content based on different muddy water sand content.The results indicate that at the same infiltration time,as the muddy water sand content increases,the cumulative infiltration volume per unit pore area decreases.The infiltration index of the free infiltration and the single-line interference vary little when the sand content increases,mainly are around 0.64 and 0.58.The relationship between infiltration parameters a,b and the sand content is linear function.At the same location,the more the sand content,the smaller the wetting front movement distance in free surface and the single-line interference surface,the less the NO_(3)^(-)-N content.
基金Supported by National Science and Technology Project of China(2007BAD30B04)~~
文摘[Objective] The aim was to study the coupling effect of water and phosphate on economic traits of sugarcane. [Method] Taking sugarcane variety ROC22 as tested material,coupling effects of different levels of water supply quantity and different levels of phosphorus fertilizer on the yield and quality of sugarcane were studied. Among them,water supply quantity had 3 levels,that was,the water supply quantity per 10 days from the early tillering stage of sugarcane to the end of elongation was 199.5 m3/hm2 (A1),400.5 m3/hm2 (A2) and 600.0 m3/hm2 (A3),respectively; Phosphorus fertilizer as basic fertilizer had 4 levels:P2O5 0 kg/hm2 (B1),120 kg/hm2 (B2),240 kg/hm2 (B3) and 360 kg/hm2 (B4). [Result] Treatment A3B2 in water-fertilizer coupling was more suitable to improve economic traits of sugarcane. [Conclusion] The research results provide theoretical basis for the efficient utilization of water and phosphorus fertilizer in production of Guangxi sugarcane and the cultivation of high-yield and high-glucose sugarcane.
文摘Drought stress (DS) is an important limiting factor for crop growth and production in some regions of the world. Limitation in water availability precludes optimal irrigation in some production regions. Therefore, investigations on the interaction of other factors to mitigate the DS to varying degree are important. Two field experiments were conducted in the experimental farm of the National Research Centre, Shalakan, Kalubia Governorate, Egypt, during 2004 and 2005 summer seasons to evaluate the interactions between N, P, K rates and optimal vs. deficit irrigation regimes on biomass yield as well as water use efficiency (WUE) of forage sorghum. Omission of the 4th irrigation significantly decreased the biomass of sorghum c.v. Pioneer, as compared to that of the plants receiving optimal irrigation or subject to omission of the 2nd irrigation. The biomass yield increased with an increase in NPK fertilizer rates. Plant height and leaf area also decreased by omitting the 2nd irrigation as compared to that of the plants under optimal irrigation, and further declined with omission of the 4th irrigation. The biomass of the plants (dry weight basis) that received the high N, P, K rates was greater by 26%, 29%, and 35% as compared to that of the plants that received no N, P, K fertilizers, under optimal irrigation, omission of the 2nd, and omission of the 4th irrigation, respectively. The corresponding increases in water use efficiency (based on fresh weight yield) were 37%, 42%, and 55%.
基金Supported by the Sub-project of "Golden Earth Project" in Sichuan Province(J-27)
文摘Shuangqiao Countryside of Neijiang City in hilly ground area in the midland of Sichuan Province was chosen as the study geographic area to survey and analyze the content distribution characteristics of the Cd in the irrigation water,ground water mud,surface layer cultivated soil,profile soil and the fertilizer which were often used in the locality,and in different crops set earth,fructification as well. The results showed that the content of Cd in the irrigation and ground water mud respectively comply with the national agriculture use irrigation standard and the contamination control standard value in agriculture use mud ( GB4284-84) respectively. The average contents in the surface cultivated soil and each layer of soil profile are all above the background level of Chengdu economic region ( 44% ) ,referring to a large scale pollution risk. The average value of Cd element in fertilizer was 1. 81 μg / g,which was higher than the third class standard of national soil environment quality; The average content of Cd element in the crops' set earth was 0. 410-0. 439 μg / g,which was higher than the second class standard of national soil environment quality and there was a measure of cumulation; The average values of Cd in crops' fructificationwas all below the primary standard of national soil environment quality,and the bioamplification coefficient sorting was CF( Cdpeanut) > CF( Cdcitrus) > CF ( Cdrice) > CF( Cdcorn) . Irrigation water had little influence on the soil Cd pollution,where fertilizer using was closely related to the Cd pollution in the surface cultivated soil in the survey area and had a certain influence on the Cd cumulation in the crops. The sorption and enrichment of crops' set earth and fructification was obviously different.
基金National Natural Science Foundation of China(51109102,51469010,51769010)the basic research project of Yunnan Province(2014FB130)key project of education department in Yunnan Province(2011Z035)
文摘The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency.
文摘The localised irrigation or drop by drop system is a technique which makes it possible to save water, because it ensures a balanced and efficient distribution of water and an effective fertilization. However, this ferti-irrigation system is facing a number of problems hindering the agricultural development. The lack of uniformity of the localised irrigation was observed and found out that it is due to chemical clogging of drippers. Considering the complexity of the composition of the natural water used in micro-irrigation, we started our study by examining the effectiveness of the inhibitor on pure calco-carbonic water with 40°F, and then moved to explore the natural water of the agricultural region. The Legrand-Poirier-Leroy method allowed us to determine the position of the irrigation water compared to calco-carbonic balance. LCGE (abbreviation of “Laboratory of Chemistry and Environmental Engineering”) technique, based on the accelerated formation of calcium carbonate deposit under the effect of a degasification of studied water, enabled us to evaluate the scaling power of this water of irrigation either with or without inhibitor. The experimental results showed the following: in the case of pure calco-carbonic water with 40?F and of natural water, the addition respectively of 2 mg/L and 2.25 mg/L of phosphate fertilizer completely inhibits the precipitation of calcium carbonate under the conditions of the experiment.
基金Supported by National Key R&D Program of China(2017YFD0301001)Shandong Province Modern Agricultural Technology Wheat Innovation Team(SDAIT-04-022,SDAIT-01-08)Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B01)。
文摘[Objectives] This study was conducted to investigate the effects of irrigation and fertilization on population structure and yield of wheat.[Methods]With Shannong 29 as an experimental material,the effects of irrigation and fertilization on population,dry matter accumulation and yield of wheat were studied.[Results]Integrated water-saving irrigation and fertilization of ridged field was the best with the highest population,dry matter accumulation and yield of wheat.[Conclusions]This study provides a theoretical basis for high-yield and high-efficiency wheat production with saved water and fertilizers.
文摘The total, soluble and insoluble oxalate contents of the small, large and cauline leaves and small and large stems of miner’s lettuce (Claytonia perfoliata ) plants which had been irrigated with tap water or a soluble fertilizer were extracted and measured using HPLC chromatography. Overall, all plant parts of miner’s lettuce analyzed contained high levels of total and soluble oxalates;however plants irrigated with fertilizer contained lower levels of oxalates compared with plants irrigated with water. On a dry matter basis, the small leaves contained higher levels of total oxalate when compared to the total oxalate in the large leaves. Soluble oxalate in the leaves of plants irrigated with water ranged from 2.6 to 7.5 mg/100g dry matter (DM) and was significantly higher (P < 0.05) than the leaves of the fertilizer-watered plants, which ranged from 1.8 to 2.8 mg/100g DM. The soluble oxalate in the small and large stems of the fertilizer-watered plants ranged from 1.20 to 1.5 mg/100g DM and was significantly lower (P < 0.05) than the water-treated small and large stems, which ranged from 3.75 to 4.4 mg/100g DM. It is recommended that the leaves of miner’s lettuce should be consumed in moderation.
基金National Natural Science Foundation of China (51239009)National Science and Technology Support Program of China (2011BAD29B05)+1 种基金Key Discipline Foundation of Water Resources and Hydropower Engineering of Xinjiang Province (XJZDXK-2002-10-05)Natural Science Foundation of Shandong Province (ZR2010EM042)
文摘Optimal use of water and fertilizers can enhance winter wheat yield and increase the efficiencies of water and fertilizer usage in dryland agricultural systems. In order to optimize water and nitrogen (N) management for winter wheat, we conducted field experiments from 2006 to 2008 at the Changwu Agro-ecological Experimental Station of the Chinese Academy of Sciences on the Loess Plateau, China. Regression models of wheat yield and evapotranspiration (ET) were established in this study to evaluate the water and fertilizer coupling effects and to determine the optimal coupling domain. The results showed that there was a positive effect of water and N fertilizer on crop yield, and optimal irrigation and N inputs can significantly increase the yield of winter wheat. In the drought year (2006-2007), the maximum yield (Yma~) of winter wheat was 9.211 t/hm2 for the treatment with 324 mm irriga- tion and 310 kg/hm2 N input, and the highest water use efficiency (WUE) of 16.335 kg/(hm2.mm) was achieved with 198 mm irrigation and 274 kg/hm2 N input. While in the normal year (2007-2008), the maximum winter wheat yield of 10.715 t/hm2 was achieved by applying 318 mm irrigation and 291 kg/hm2 N, and the highest WUE was 18.69 kg/(hm2.mm) with 107 mm irrigation and 256 kg/hm2 N input. Crop yield and ET response to irrigation and N inputs followed a quadratic and a line function, respectively. The optimal coupling domain was determined using the elas- ticity index (El) and its expression in the water-N dimensions, and was represented by an ellipse, such that the global maximum WUE (WUErnax) and Ymax values corresponded to the left and right end points of the long axis, respectively. Considering the aim to get the greatest profit in practice, the optimal coupling domain was represented by the lower half of the ellipse, with the Yma~ and WUE^ax on the two end points of the long axis. Overall, we found that the total amount of irrigation for winter wheat should not exceed 324 ram. In addition, our optimal coupling domain visually reflects the optimal range of water and N inputs for the maximum winter wheat yield on the Loess Plateau, and it may also provide a useful reference for identifying appropriate water and N inputs in agricultural applications.
文摘This research manuscript reports the heavy metal accumulation in four marine seaweeds sp. 1)?Caulerpa sertlatioides (Cuba);2) Caulerpa cf. brachypus;(Bali, Indonesia);3) Undaria pinnatifida (West-Donegal, Ireland);4) Ulva lactuca (Easters-Scheldt, the Netherlands). Mechanical pressure at 10 bar of fresh seaweed fronds casu quo biomass in the laboratory delivered seaweed moisture which was analyzed by Inductively Coupled Plasma Spectroscopy (ICP)-techniques for heavy-metals = [HM], (Al, As, Cd, Co, Cr, Cu, Fe, Mo, Ni, Pb & Zn). Three important observations were made: 1) The [HM] in the seaweed moisture is higher than in the surrounding seawater which directs to mechanism(s) of bio-accumulation;2) The accumulation factor [AF] is varying per metallic-cation with an overall trend for our four seaweeds and sampling locations for [HM] are: As & Co & Cu: 5000 - 10,000 μg/l;Ni & Zn: 3000 - 5000 μg/l;Cd: 2000 - 3000 μg/l;Cr: 1000 - 2000 μg/l;Al: 200 - 1000 μg/l;Mo & Pb & Fe: 0 - 200 μg/l range. 3) Seaweed moisture detected that [HM]: Pb & Zn & Fe—which all three could not be detected in the seawater—supports the view that seaweeds have a preference in their bio-accumulation mechanism for these three HM. Major conclusion is in general that “overall” for the macro-elements Ca, Fe, K, Mg, Mn, Na, P & S in the moisture of the four seaweed species the concentration is lower in the seaweed species, or equals the concentration, in comparison to the surrounding sea water. For the HM (Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb & Zn) the opposite is the case species and is the concentration “overall” higher in the seaweed species in comparison to the surrounding sea water. Further topics addressed include strategies of irrigation of the Sahara desert with the moisture out of seaweeds under conditions of low anthropogenic influences.