The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience. Estimating entire AP number is also a familiar question in general physics. With standard atmosphere model, con...The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience. Estimating entire AP number is also a familiar question in general physics. With standard atmosphere model, considering the number difference of AP caused by rough and uneven in the earth surface below, the sum of dry clean atmosphere particle is . So the whole number of AP including water vapor is . The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.展开更多
Since the late nineteenth century, until the present time, there has been an increase in the earth’s global mean surface temperature (GMST). This temperature increase has been calculated at 0.85°C over the pe...Since the late nineteenth century, until the present time, there has been an increase in the earth’s global mean surface temperature (GMST). This temperature increase has been calculated at 0.85°C over the period 1880-2012. The causes of this temperature increase include increased levels of greenhouse gases (GHG’s), variations in solar irradiance and changes in absorption and re-radiation of heat. Volcanic activity and orbital cycles work to cool the earth’s surface. A thermodynamic analysis is presented of the earth’s atmosphere. The analysis demonstrates an increase in entropy production as a result of increased GMST. An equation is derived expressing entropy production in the atmosphere based on atmospheric processes (wind, precipitation, chemical reactions, electrical activity and heat transfer). The effects of increased entropy production on wind, precipitation, freezing and melting of ice, chemical reactions and electrical activity are given showing an increase in the combination of the above phenomena.展开更多
In their daily practices, meteorologists make extensive use of the geostrophic wind properties to explain many weather phenomena such as the meaning and direction of the horizontal winds that take place around the low...In their daily practices, meteorologists make extensive use of the geostrophic wind properties to explain many weather phenomena such as the meaning and direction of the horizontal winds that take place around the low atmospheric pressures. The biggest challenge that faces the public who is interested in information disseminated by meteorologists is to know exactly what means the geostrophic wind. Besides the literal definitions scattered in very little scientific work, there is unfortunately no book which gives importance to the algebraic definition of the geostrophic wind. Our work shows that to better understand the behavior of natural phenomena, it is essential to combine the theories with based observations. Obviously, observations cannot be relevant without a theory that guides the observers. Conversely, no theory can be validated without experimental verification. Synoptic observations show that in the “free atmosphere!” the wind vectors are very nearly parallel to isobars, and the flow is perpendicular to the horizontal pressure gradient force, at least at any given instant. This kind of information recommends great caution when making geostrophic approximations. Our work also shows that for tornadoes, there is no need to move away from the surface of the oceans to observe the geostrophic balance. Undoubtedly, identification and interpretation of earth’s atmosphere dynamics’ and thermodynamics’ similarities between rogue waves and oceans’ surface geostrophic wind will be an easy exercise to researchers who will give importance to result provided by this paper.展开更多
It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals ex...It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.展开更多
A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but ...A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1-2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25°N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.展开更多
In this study, dynamic linkage of atmosphere-ocean coupling between the North Pacific and the tropical Pacific was demonstrated using a large number of ensemble perturbed initial condition experiments in a fully coupl...In this study, dynamic linkage of atmosphere-ocean coupling between the North Pacific and the tropical Pacific was demonstrated using a large number of ensemble perturbed initial condition experiments in a fully coupled fast ocean-atmosphere model (FOAM). In the FOAM model, an idealized mixed layer warming was initiated in the Kuroshio-Oyashio extension region, while the ocean and atmosphere remained fully coupled both locally and elsewhere. The modeling results show that the warm anomalies are associated with anomalous cyclonic winds, which induce initial warming anomalies extending downstream in the following winter. Then, the downstream warming spreads southwestward and induces SST warming in the equatorial Pacific via surface wind-evaporation-SST feedback. Warming in the tropical Pacific is further reinforced by Bjerknes' feedback.展开更多
Atmospheric or climate phenomena are usually a combination of elementary events whose scales range from the very small (microscopic) to the infinitely large (synoptic). This means that build reasoning from ground- or ...Atmospheric or climate phenomena are usually a combination of elementary events whose scales range from the very small (microscopic) to the infinitely large (synoptic). This means that build reasoning from ground- or space-based observations only, regardless of the physics of elementary processes, inevitably leads to erroneous results. Given the fact that plots of Troposphere Tricellular Circulation are only based on weather mean conditions measured near the ground (i.e.: pressure and winds fields observed at the surface of the earth), we want to improve these representations of the general circulation of the atmosphere, by using both Clausius-Clapeyron Relation and Carnot Principle derived respectively in 1832 and 1824. Indeed, Clausius-Clapeyron relation shows precisely that, unlike the dry water vapor that can be assimilated to the ideal gas at many circumstances, the saturated water vapor has, in an air parcel at the same time cold (temperature below 0.0098°C) and rich in moisture (vapor pressure above 6.11 mb), thermoelastic properties diametrically opposed to those of ideal gas (including dry water vapor). Vertical profiles of temperature and water vapor in the atmosphere provided by ground- or space-based observations lead to the location of a troposphere region in which the ideal gas assumption should be banned: hence appropriate and unique plot of earth’s atmosphere tricellular circulation.展开更多
A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed...A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed.展开更多
Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation...Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD(length of day) is-0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.展开更多
Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characte...Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.展开更多
Land-atmosphere coupling is a key process of the climate system, and various coupling mechanisms have been proposed before based on observational and numerical analyses. The impact of soil moisture(SM) on evapotrans...Land-atmosphere coupling is a key process of the climate system, and various coupling mechanisms have been proposed before based on observational and numerical analyses. The impact of soil moisture(SM) on evapotranspiration(ET) and further surface temperature(ST) is an important aspect of such coupling. Using ERA-Interim data and CLM4.0 offline simulation results, this study further explores the relationships between SM/ST and ET to better understand the complex nature of the land-atmosphere coupling(i.e., spatial and seasonal variations) in eastern China, a typical monsoon area. It is found that two diagnostics of land-atmosphere coupling(i.e., SM-ET correlation and ST-ET correlation) are highly dependent on the climatology of SM and ST. By combining the SM-ET and ST-ET relationships, two "hot spots" of land-atmosphere coupling over eastern China are identified: Southwest China and North China. In Southwest China, ST is relatively high throughout the year, but SM is lowest in spring, resulting in a strong coupling in spring. However, in North China, SM is relatively low throughout the year, but ST is highest in summer, which leads to the strongest coupling in summer. Our results emphasize the dependence of land-atmosphere coupling on the seasonal evolution of climatic conditions and have implications for future studies related to land surface feedbacks.展开更多
The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human liv...The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.展开更多
Twenty orthosequences and their corresponding sea-level change (SLC) cycles have been recognized in the Devonian overlying the Caledonian unconformity, of which 9, 5.5 and 5.5 occurred in the Lower, Middle and Upper D...Twenty orthosequences and their corresponding sea-level change (SLC) cycles have been recognized in the Devonian overlying the Caledonian unconformity, of which 9, 5.5 and 5.5 occurred in the Lower, Middle and Upper Devonian respectively. They can be grouped into 4 orthosequence sets, in which the maximum flooding surfaces lie in the sulcutus Zone (D12), perbonus Zone (D13), Middle and Upper varcus Zone (D22) and gigas Zone (D21) respectively. Four instant palaeogeographical reconstructions of South China have been made in the Emsian and Givetian. Devonian sea-level change rhythms of South China can be divided into 3 categories: the autorhythmic, the worldwide and regional allorhythmic, and the coupling-rhythmic. They developed respectively in the Famennian, Pragian, Eifelian, Lochkovian, Emsian, Givetian, Frasnian and the F / F (between the Frasnian and Famennian) event. The cause of the worldwide allorhythmic SLC of the Pragian and Eifelian under comparatively dry, warm and tranquil conditions may be related to the pulsating expanding and contracting of the oceanic basin volume or the earth volume pulsation, rather than the common glaciation and plate tectonism. The coupling-rhythmic SLC related to the F/ F event is a sensitive indicator of the interaction between terrestrial and extraterrestrial factors, and coordinated action among the earth-spheres.展开更多
The most striking contrasts that are found on the continents in paleogeographic reconstructions of the end of the Mesozoic era are the occurrence on the place of the disappeared humid subtropics of the largest Gobi De...The most striking contrasts that are found on the continents in paleogeographic reconstructions of the end of the Mesozoic era are the occurrence on the place of the disappeared humid subtropics of the largest Gobi Desert in Eurasia with air temperatures falling below 50°from the freezing point and annual precipitation totals at the level of 100 mm. Science does not know the processes that can lead to a cooling of the atmosphere at 70°and other equally radical changes in nature with a stable position of the blocks of the earth’s crust in space. Changes in the environment of this magnitude can only be the result of land moving northward for a distance equal to about half the radius of the Earth. Titanosaurs, described by the remains in the Gobi deposits, had a body volume, which at modern gravity corresponds to a mass of 10 to 30 ton. However, animals with such a mass and such growth could not exist now. To create the necessary pressure in the vessels and provide energy to the body, Mongolian sauropods would need a heart of 2 - 3 m in diameter. Known types of muscle tissue are unable to maintain an elongated neck and head with a mass of more than a ton. The femur bones of four-legged dinosaurs had strength sufficient to move on land only animals weighing no more than 5 - 7 tons. The bones of giant bipedal dinosaurs at a constant gravitational field would have to be subjected to specific loads, several times greater than the bones of modern elephants, which is excluded. The natural conclusion about the action of a lesser gravity in the Mesozoic provides a solution to the mystery of the truly global spread in that era of bipedal mode of movement as the most energy efficient.展开更多
In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and...In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and composition,climate and chemistry-climate coupling and climate modelling,dynamics in particular those inducing the coupling of the atmospheric layers.展开更多
This discussion paper is an attempt to consider new ideas about the nature of explosive phenomena of the meteorite bodies in the Earth's atmosphere. Authors attract approaches, based on the concepts of physics of com...This discussion paper is an attempt to consider new ideas about the nature of explosive phenomena of the meteorite bodies in the Earth's atmosphere. Authors attract approaches, based on the concepts of physics of combustion, explosion and detonation in order to explain the explosive collapse of the meteorite. Authors believe that the meteorite explosion may be the result of gas-detonation mechanism of overheated meteoric bodies explosive boiling-up (the "vapor explosion"), accompanied by the formation of a supersonic front of shock wave. The considered hypothesis regarding the role of the "vapor explosion" in geological disasters can be used to explain the mechanisms of explosive phenomena in Volcanology: (1) With respect to the description of nature of phreatic eruptions; (2) for interpretation of dynamic regularities of the volcano crater opening and the subsequent shock-wave emission of steam-gas "fountain" to a height of several kilometers with fragments of magma and rocks as a result of the "vapor explosion" of overheated magma mass under the dome of the volcano.展开更多
The PeTa (Perelman-Tatartchenko) effect is the radiation of the energy of a first-order phase transition during the transition from a less condensed phase to a more condensed one. The effect was independently discover...The PeTa (Perelman-Tatartchenko) effect is the radiation of the energy of a first-order phase transition during the transition from a less condensed phase to a more condensed one. The effect was independently discovered by M. Perelman and the author of this paper. Six papers on the PeTa effect have been published in this journal over the past nine years. They are devoted to the development of PeTa models to explain the following phenomena: IR radiation from cold surfaces, cavitation luminescence/sonoluminescence (CL/SL), laser-induced bubble luminescence (LIBL), and vapor bubble luminescence (VBL) in underwater geysers. This paper describes the sources of PeTa radiation in the Earth’s atmosphere. These sources of infrared radiation have been investigated by numerous research groups, but their interpretation either does not exist at all, or it is erroneous. The following phenomena are specifically considered: PeTa radiation during the formation of clouds and fog;a pulse laser based on the PeTa radiation;condensation explosions as sources of PaTa radiation;measurement of the concentration of water vapor in the atmosphere using PeTa radiation;atmospheric scintillation of infrared radiation in the atmosphere due to the PeTa effect;PeTa radiation as a source of comfort for the igloo;the influence of PeTa radiation on living organisms;PeTa radiation due to characteristics of tropical storms;PeTa radiation as a possible precursor to earthquakes. The problem of global warming, which worries everyone, as it turns out, is also associated with the PeTa effect.展开更多
A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atm...A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, shutting down the ocean-atmosphere coupling in the North Pacific, the tropical Pacific, and the South Pacific, respectively. The results show that regional ocean-atmosphere coupling is not only important to the strength of local long-term SST variability but also has an influence on the variability further afield. In both the tropical Pacific and North Pacific, this local effect is the main control, which is much more obvious in the tropical regions. The existence of the PDO is extremely dependent on the coupling in the tropical Pacific. However, extratropical coupling, in particular that in the North Pacific, is also important to form its spatial pattern and strengthen the variability in some tropical areas. For the NPM, its existence is primarily determined by the coupling in the North Pacific.展开更多
Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and rene...Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.展开更多
基金supported by the National Key Technologies R&D Program of China[grant number 2022YFC3002803]the National Science Fund for Distinguished Young Scholars[grant number 41925021].
文摘The total number of atmospheric particle (AP) is an important datum for planetary science and geoscience. Estimating entire AP number is also a familiar question in general physics. With standard atmosphere model, considering the number difference of AP caused by rough and uneven in the earth surface below, the sum of dry clean atmosphere particle is . So the whole number of AP including water vapor is . The rough estimation for the total number of AP on other planets (or satellites) in condensed state is also discussed on the base of it.
文摘Since the late nineteenth century, until the present time, there has been an increase in the earth’s global mean surface temperature (GMST). This temperature increase has been calculated at 0.85°C over the period 1880-2012. The causes of this temperature increase include increased levels of greenhouse gases (GHG’s), variations in solar irradiance and changes in absorption and re-radiation of heat. Volcanic activity and orbital cycles work to cool the earth’s surface. A thermodynamic analysis is presented of the earth’s atmosphere. The analysis demonstrates an increase in entropy production as a result of increased GMST. An equation is derived expressing entropy production in the atmosphere based on atmospheric processes (wind, precipitation, chemical reactions, electrical activity and heat transfer). The effects of increased entropy production on wind, precipitation, freezing and melting of ice, chemical reactions and electrical activity are given showing an increase in the combination of the above phenomena.
文摘In their daily practices, meteorologists make extensive use of the geostrophic wind properties to explain many weather phenomena such as the meaning and direction of the horizontal winds that take place around the low atmospheric pressures. The biggest challenge that faces the public who is interested in information disseminated by meteorologists is to know exactly what means the geostrophic wind. Besides the literal definitions scattered in very little scientific work, there is unfortunately no book which gives importance to the algebraic definition of the geostrophic wind. Our work shows that to better understand the behavior of natural phenomena, it is essential to combine the theories with based observations. Obviously, observations cannot be relevant without a theory that guides the observers. Conversely, no theory can be validated without experimental verification. Synoptic observations show that in the “free atmosphere!” the wind vectors are very nearly parallel to isobars, and the flow is perpendicular to the horizontal pressure gradient force, at least at any given instant. This kind of information recommends great caution when making geostrophic approximations. Our work also shows that for tornadoes, there is no need to move away from the surface of the oceans to observe the geostrophic balance. Undoubtedly, identification and interpretation of earth’s atmosphere dynamics’ and thermodynamics’ similarities between rogue waves and oceans’ surface geostrophic wind will be an easy exercise to researchers who will give importance to result provided by this paper.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42174101,41974023)+1 种基金the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)(Germany)The Offshore International Science and Technology Cooperation Center of Frontier Technology of Geodesy。
文摘It is commonly believed that the atmosphere is decoupled from the solid Earth.Thus,it is difficult for the seismic wave energy inside the Earth to propagate into the atmosphere,and atmospheric pressure wave signals excited by earthquakes are unlikely to exist in atmospheric observations.An increasing number of studies have shown that earthquakes,volcanoes,and tsunamis can perturb the Earth's atmosphere due to various coupling effects.However,the observations mainly focus on acoustic waves with periods of less than 10 min and inertial gravity waves with periods of greater than 1 h.There are almost no clear observations of gravity waves that coincide with observations of low-frequency signals of the Earth's free oscillation frequency band within 1 h.This paper investigates atmospheric gravity wave signals within1 h of surface-atmosphere observations using the periodogram method based on seismometer and microbarometer observations from the global seismic network before and after the July 29,2021 M_(w)8.2 Alaska earthquake in the United States.The numerical results show that the atmospheric gravity wave signals with frequencies similar to those of the Earth's free oscillations _(0)S_(2) and _(0)T_(2) can be detected in the microbaro meter observations.The results con firm the existence of atmospheric gravity waves,indicating that the atmosphere and the solid Earth are not decoupled within this frequency band and that seismic wave energy excited by earthquakes can propagate from the interior of the Earth to the atmosphere and enhance the atmospheric gravity wave signals within 1 h.
基金The authors would like to thank Prof.Zhengyu Liu,Mr.Wei Liu and Mr.Wu Shu for giving good suggestions and comments.This work was jointly supported by an open project of LASG,the Natural Science Foundation of China(Grant Nos.40333030 and 40231004)the National Key Programme(G2000078502).
文摘A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1-2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25°N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.
基金supported by the National Basic Research Program of China (Grant Nos.2012CB955603 and 2013CB956201)by the National Natural Science Foundation of China (NSFC) (Grant Nos.40830106,40906003,41130859,and 41276002)
文摘In this study, dynamic linkage of atmosphere-ocean coupling between the North Pacific and the tropical Pacific was demonstrated using a large number of ensemble perturbed initial condition experiments in a fully coupled fast ocean-atmosphere model (FOAM). In the FOAM model, an idealized mixed layer warming was initiated in the Kuroshio-Oyashio extension region, while the ocean and atmosphere remained fully coupled both locally and elsewhere. The modeling results show that the warm anomalies are associated with anomalous cyclonic winds, which induce initial warming anomalies extending downstream in the following winter. Then, the downstream warming spreads southwestward and induces SST warming in the equatorial Pacific via surface wind-evaporation-SST feedback. Warming in the tropical Pacific is further reinforced by Bjerknes' feedback.
文摘Atmospheric or climate phenomena are usually a combination of elementary events whose scales range from the very small (microscopic) to the infinitely large (synoptic). This means that build reasoning from ground- or space-based observations only, regardless of the physics of elementary processes, inevitably leads to erroneous results. Given the fact that plots of Troposphere Tricellular Circulation are only based on weather mean conditions measured near the ground (i.e.: pressure and winds fields observed at the surface of the earth), we want to improve these representations of the general circulation of the atmosphere, by using both Clausius-Clapeyron Relation and Carnot Principle derived respectively in 1832 and 1824. Indeed, Clausius-Clapeyron relation shows precisely that, unlike the dry water vapor that can be assimilated to the ideal gas at many circumstances, the saturated water vapor has, in an air parcel at the same time cold (temperature below 0.0098°C) and rich in moisture (vapor pressure above 6.11 mb), thermoelastic properties diametrically opposed to those of ideal gas (including dry water vapor). Vertical profiles of temperature and water vapor in the atmosphere provided by ground- or space-based observations lead to the location of a troposphere region in which the ideal gas assumption should be banned: hence appropriate and unique plot of earth’s atmosphere tricellular circulation.
基金This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 40523001, 40221503, 40675050)Major State Basic Research Development Program of China under Grant Nos. 2005CB321703, 2006CB403603the International Partnership Creative Group entitled "The Climate System Model Development and Application Studies".
文摘A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed.
基金partly supported by National 973 Project China(2013CB733305)NSFC(41174011,41210006,41504019)supported by a fund from Korea Astronomy and Space Science Institute(2016 Space Geodesy Project about Atmospheric/Ocean Tidal Effects)
文摘Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD(length of day) is-0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.
基金funded by National Key Technology R&D Program in the 11th Five Year Plan of China (2008BAC35B00)the international cooperation project(2009DFA21480)
文摘Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41625019 and 41605042)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20151525)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Land-atmosphere coupling is a key process of the climate system, and various coupling mechanisms have been proposed before based on observational and numerical analyses. The impact of soil moisture(SM) on evapotranspiration(ET) and further surface temperature(ST) is an important aspect of such coupling. Using ERA-Interim data and CLM4.0 offline simulation results, this study further explores the relationships between SM/ST and ET to better understand the complex nature of the land-atmosphere coupling(i.e., spatial and seasonal variations) in eastern China, a typical monsoon area. It is found that two diagnostics of land-atmosphere coupling(i.e., SM-ET correlation and ST-ET correlation) are highly dependent on the climatology of SM and ST. By combining the SM-ET and ST-ET relationships, two "hot spots" of land-atmosphere coupling over eastern China are identified: Southwest China and North China. In Southwest China, ST is relatively high throughout the year, but SM is lowest in spring, resulting in a strong coupling in spring. However, in North China, SM is relatively low throughout the year, but ST is highest in summer, which leads to the strongest coupling in summer. Our results emphasize the dependence of land-atmosphere coupling on the seasonal evolution of climatic conditions and have implications for future studies related to land surface feedbacks.
基金The National Natural Science Foundation of China under contract Nos 41372173 and 51609244the Geological Survey Projects of China Geological Survey under contract No.121201006000182401
文摘The Bohai Sea is extremely susceptible to storm surges induced by extratropical storms and tropical cyclones in nearly every season. In order to relieve the impacts of storm surge disasters on structures and human lives in coastal regions, it is very important to understand the occurring of the severe storm surges. The previous research is mostly restricted to a single type of storm surge caused by extratropical storm or tropical cyclone. In present paper, a coupled atmosphere-ocean model is developed to study the storm surges induced by two types of extreme weather conditions. Two special cases happened in the Bohai Sea are simulated successively. The wind intensity and minimum sea-level pressure derived from the Weather Research and Forecasting (WRF) model agree well with the observed data. The computed time series of water level obtained from the Regional Ocean Modeling System (ROMS) also are in good agreement with the tide gauge observations. The structures of the wind fields and average currents for two types of storm surges are analyzed and compared. The results of coupled model are compared with those from the uncoupled model. The case studies indicate that the wind field and structure of the ocean surface current have great differences between extratropical storm surge and typhoon storm surge. The magnitude of storm surge in the Bohai Sea is shown mainly determined by the ocean surface driving force, but greatly affected by the coastal geometry and bathymetry.
基金Jointly supported by the Special Research Foundation for Doctorate Programme of CollegesUniversities of the State Education Commission of China (No. 9549111), Fundamental Research Project from the State Commission of Science and Technology of ChinaNa
文摘Twenty orthosequences and their corresponding sea-level change (SLC) cycles have been recognized in the Devonian overlying the Caledonian unconformity, of which 9, 5.5 and 5.5 occurred in the Lower, Middle and Upper Devonian respectively. They can be grouped into 4 orthosequence sets, in which the maximum flooding surfaces lie in the sulcutus Zone (D12), perbonus Zone (D13), Middle and Upper varcus Zone (D22) and gigas Zone (D21) respectively. Four instant palaeogeographical reconstructions of South China have been made in the Emsian and Givetian. Devonian sea-level change rhythms of South China can be divided into 3 categories: the autorhythmic, the worldwide and regional allorhythmic, and the coupling-rhythmic. They developed respectively in the Famennian, Pragian, Eifelian, Lochkovian, Emsian, Givetian, Frasnian and the F / F (between the Frasnian and Famennian) event. The cause of the worldwide allorhythmic SLC of the Pragian and Eifelian under comparatively dry, warm and tranquil conditions may be related to the pulsating expanding and contracting of the oceanic basin volume or the earth volume pulsation, rather than the common glaciation and plate tectonism. The coupling-rhythmic SLC related to the F/ F event is a sensitive indicator of the interaction between terrestrial and extraterrestrial factors, and coordinated action among the earth-spheres.
文摘The most striking contrasts that are found on the continents in paleogeographic reconstructions of the end of the Mesozoic era are the occurrence on the place of the disappeared humid subtropics of the largest Gobi Desert in Eurasia with air temperatures falling below 50°from the freezing point and annual precipitation totals at the level of 100 mm. Science does not know the processes that can lead to a cooling of the atmosphere at 70°and other equally radical changes in nature with a stable position of the blocks of the earth’s crust in space. Changes in the environment of this magnitude can only be the result of land moving northward for a distance equal to about half the radius of the Earth. Titanosaurs, described by the remains in the Gobi deposits, had a body volume, which at modern gravity corresponds to a mass of 10 to 30 ton. However, animals with such a mass and such growth could not exist now. To create the necessary pressure in the vessels and provide energy to the body, Mongolian sauropods would need a heart of 2 - 3 m in diameter. Known types of muscle tissue are unable to maintain an elongated neck and head with a mass of more than a ton. The femur bones of four-legged dinosaurs had strength sufficient to move on land only animals weighing no more than 5 - 7 tons. The bones of giant bipedal dinosaurs at a constant gravitational field would have to be subjected to specific loads, several times greater than the bones of modern elephants, which is excluded. The natural conclusion about the action of a lesser gravity in the Mesozoic provides a solution to the mystery of the truly global spread in that era of bipedal mode of movement as the most energy efficient.
文摘In this report we summarize the research results by Chinese scientists in 2018–2020.The focuses are placed on the researches of the middle and upper atmosphere,specifically the researches on atmospheric structure and composition,climate and chemistry-climate coupling and climate modelling,dynamics in particular those inducing the coupling of the atmospheric layers.
文摘This discussion paper is an attempt to consider new ideas about the nature of explosive phenomena of the meteorite bodies in the Earth's atmosphere. Authors attract approaches, based on the concepts of physics of combustion, explosion and detonation in order to explain the explosive collapse of the meteorite. Authors believe that the meteorite explosion may be the result of gas-detonation mechanism of overheated meteoric bodies explosive boiling-up (the "vapor explosion"), accompanied by the formation of a supersonic front of shock wave. The considered hypothesis regarding the role of the "vapor explosion" in geological disasters can be used to explain the mechanisms of explosive phenomena in Volcanology: (1) With respect to the description of nature of phreatic eruptions; (2) for interpretation of dynamic regularities of the volcano crater opening and the subsequent shock-wave emission of steam-gas "fountain" to a height of several kilometers with fragments of magma and rocks as a result of the "vapor explosion" of overheated magma mass under the dome of the volcano.
文摘The PeTa (Perelman-Tatartchenko) effect is the radiation of the energy of a first-order phase transition during the transition from a less condensed phase to a more condensed one. The effect was independently discovered by M. Perelman and the author of this paper. Six papers on the PeTa effect have been published in this journal over the past nine years. They are devoted to the development of PeTa models to explain the following phenomena: IR radiation from cold surfaces, cavitation luminescence/sonoluminescence (CL/SL), laser-induced bubble luminescence (LIBL), and vapor bubble luminescence (VBL) in underwater geysers. This paper describes the sources of PeTa radiation in the Earth’s atmosphere. These sources of infrared radiation have been investigated by numerous research groups, but their interpretation either does not exist at all, or it is erroneous. The following phenomena are specifically considered: PeTa radiation during the formation of clouds and fog;a pulse laser based on the PeTa radiation;condensation explosions as sources of PaTa radiation;measurement of the concentration of water vapor in the atmosphere using PeTa radiation;atmospheric scintillation of infrared radiation in the atmosphere due to the PeTa effect;PeTa radiation as a source of comfort for the igloo;the influence of PeTa radiation on living organisms;PeTa radiation due to characteristics of tropical storms;PeTa radiation as a possible precursor to earthquakes. The problem of global warming, which worries everyone, as it turns out, is also associated with the PeTa effect.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90411010, 40506007)the key project of International Science and Technology Cooperation program of China (2006DFB21250)the 111 project (B07036)
文摘A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, shutting down the ocean-atmosphere coupling in the North Pacific, the tropical Pacific, and the South Pacific, respectively. The results show that regional ocean-atmosphere coupling is not only important to the strength of local long-term SST variability but also has an influence on the variability further afield. In both the tropical Pacific and North Pacific, this local effect is the main control, which is much more obvious in the tropical regions. The existence of the PDO is extremely dependent on the coupling in the tropical Pacific. However, extratropical coupling, in particular that in the North Pacific, is also important to form its spatial pattern and strengthen the variability in some tropical areas. For the NPM, its existence is primarily determined by the coupling in the North Pacific.
文摘Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.