The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the...The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.展开更多
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved ...The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.展开更多
Electrically-excited flux-switching machines are advantageous in simple and reliable structure,good speed control performance,low cost,etc.,so they have arouse wide concerns from new energy field.However,they have muc...Electrically-excited flux-switching machines are advantageous in simple and reliable structure,good speed control performance,low cost,etc.,so they have arouse wide concerns from new energy field.However,they have much lower torque density/thrust density compared with the same type PM machines.To overcome this challenge,electromagnetic-thermal coupled analysis is carried out with respect to water-cooled electrically-excited flux-switching linear machines(EEFSLM).The simulation results indicate that the conventional fixed copper loss method(FCLM)is no longer suitable for high thrust density design,since it is unable to consider the strong coupling between the electromagnetic and thermal performance.Hence,a multi-step electromagnetic-thermal joint optimisation method is proposed,which first ensures the consistency between the electromagnetic and thermal modelling and then considers the effect of different field/armature coil sizes.By using the proposed joint optimisation method,it is found that the combination of relatively large size of field coil and relatively low field copper loss is favourable for achieving high thrust force for the current EEFSLM design.Moreover,the thrust force is raised by 13-15%compared with using the FCLM.The electromagnetic and thermal performance of the EEFSLM is validated by the prototype test.展开更多
The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in t...The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in the Qaidam and ad jacent mountain belts, controlling the development and evolution of the Qaidam b asin. These fault systems are: (1)north Qaidam Qilian Mountain fault system; (2 ) south Qaidam East Kunlun Mountain fault system; (3)Altun strike slip fault s ystem; (4)Elashan strike slip fault system, and (5) Gansen Xiaochaidan fault s ystem. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basi n, the migration of depocenters and the distribution of hydrocarbon accumulation belt.展开更多
This paper focuses on the ducted propulsion with the accelerating nozzle,and discusses the influence of its fluid acceleration quality on its propulsive performances,including the hull efficiency,the relative rotative...This paper focuses on the ducted propulsion with the accelerating nozzle,and discusses the influence of its fluid acceleration quality on its propulsive performances,including the hull efficiency,the relative rotative efficiency,the effective wake,and the thrust deduction factor.An actual ducted propulsion system is used as an example for computational analysis.The computational conditions are divided into four combinations,which are provided with different propeller pitches,cambers,and duct lengths.Themethod applied in this study is the Computational Fluid Dynamics(CFD)technology,and the contents of the calculation include the hull’s viscous resistance,the wave-making resistance,the propeller performance curve,and the self-propulsion simulation in order to obtain the ship’s effective wake,thrust deduction factor,hull efficiency,and relative rotative efficiency.The performance curve of the propeller and resistance estimation results are compared with the experimental values for determining the correctness of the self-propulsion simulation.According to the computational analysis,it is known that increasing the propeller pitch cannot effectively increase the hull efficiency.The duct acceleration quality can be reduced by shortening the duct length;hence,when the effective wake fraction and thrust deduction factor decrease,the hull efficiency is increased.In addition,the pressure inside the duct is relatively low if the acceleration quality of the duct is too high,which is unfavorable for controlling the propeller cavitation.Moreover,if the hull bottom in front of the propeller is tapered up from the front to the back at an overly steep angle,the thrust deduction factor will be too large and lead to a relatively low hull efficiency.展开更多
Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific mult...Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.展开更多
Based on continuous GPS observations within China as well as global GPS tracking network, a calculation has been made of far-field coseismic displacements associated with the December, 2004 (Mw = 9.3) and March, 2005 ...Based on continuous GPS observations within China as well as global GPS tracking network, a calculation has been made of far-field coseismic displacements associated with the December, 2004 (Mw = 9.3) and March, 2005 (Mw = 8.7) earthquakes. The far-field coseismic displacements are associated with the 2004 shock range more than 6000―7000 km in both north-south and east-west dimensions, and depict an undulated wave pattern of contraction and extension. The coseismic displacements associ-ated with the 2005 event, however, are distributed near the epicentral region, and the event itself may be an aftershock of the 2004 earthquake.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51439002)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120002110011,20130002110072)Special Funds for Marine Renewable Energy Projects(Grant no.GHME2012GC02)
文摘The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant Nos.2006AA09A103 and 2006AA09A104)
文摘The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.
基金supported in part by Zhejiang Provincial Natural Science Foundation of China under Grant LY21E070002 and LY17E070002。
文摘Electrically-excited flux-switching machines are advantageous in simple and reliable structure,good speed control performance,low cost,etc.,so they have arouse wide concerns from new energy field.However,they have much lower torque density/thrust density compared with the same type PM machines.To overcome this challenge,electromagnetic-thermal coupled analysis is carried out with respect to water-cooled electrically-excited flux-switching linear machines(EEFSLM).The simulation results indicate that the conventional fixed copper loss method(FCLM)is no longer suitable for high thrust density design,since it is unable to consider the strong coupling between the electromagnetic and thermal performance.Hence,a multi-step electromagnetic-thermal joint optimisation method is proposed,which first ensures the consistency between the electromagnetic and thermal modelling and then considers the effect of different field/armature coil sizes.By using the proposed joint optimisation method,it is found that the combination of relatively large size of field coil and relatively low field copper loss is favourable for achieving high thrust force for the current EEFSLM design.Moreover,the thrust force is raised by 13-15%compared with using the FCLM.The electromagnetic and thermal performance of the EEFSLM is validated by the prototype test.
文摘The purpose of this paper is to analyze the regional fault systems o f Qaidam basin and adjacent orogenic belts. Field investigation and seismic interp retation indicate that five regional fault systems occurred in the Qaidam and ad jacent mountain belts, controlling the development and evolution of the Qaidam b asin. These fault systems are: (1)north Qaidam Qilian Mountain fault system; (2 ) south Qaidam East Kunlun Mountain fault system; (3)Altun strike slip fault s ystem; (4)Elashan strike slip fault system, and (5) Gansen Xiaochaidan fault s ystem. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basi n, the migration of depocenters and the distribution of hydrocarbon accumulation belt.
文摘This paper focuses on the ducted propulsion with the accelerating nozzle,and discusses the influence of its fluid acceleration quality on its propulsive performances,including the hull efficiency,the relative rotative efficiency,the effective wake,and the thrust deduction factor.An actual ducted propulsion system is used as an example for computational analysis.The computational conditions are divided into four combinations,which are provided with different propeller pitches,cambers,and duct lengths.Themethod applied in this study is the Computational Fluid Dynamics(CFD)technology,and the contents of the calculation include the hull’s viscous resistance,the wave-making resistance,the propeller performance curve,and the self-propulsion simulation in order to obtain the ship’s effective wake,thrust deduction factor,hull efficiency,and relative rotative efficiency.The performance curve of the propeller and resistance estimation results are compared with the experimental values for determining the correctness of the self-propulsion simulation.According to the computational analysis,it is known that increasing the propeller pitch cannot effectively increase the hull efficiency.The duct acceleration quality can be reduced by shortening the duct length;hence,when the effective wake fraction and thrust deduction factor decrease,the hull efficiency is increased.In addition,the pressure inside the duct is relatively low if the acceleration quality of the duct is too high,which is unfavorable for controlling the propeller cavitation.Moreover,if the hull bottom in front of the propeller is tapered up from the front to the back at an overly steep angle,the thrust deduction factor will be too large and lead to a relatively low hull efficiency.
基金the financial supports provided by the Natural Science Fund of Jiangsu Province,China(No.BK20200448)the Postdoctoral Science Foundation of China(No.2020TQ0143)。
文摘Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load.
文摘Based on continuous GPS observations within China as well as global GPS tracking network, a calculation has been made of far-field coseismic displacements associated with the December, 2004 (Mw = 9.3) and March, 2005 (Mw = 8.7) earthquakes. The far-field coseismic displacements are associated with the 2004 shock range more than 6000―7000 km in both north-south and east-west dimensions, and depict an undulated wave pattern of contraction and extension. The coseismic displacements associ-ated with the 2005 event, however, are distributed near the epicentral region, and the event itself may be an aftershock of the 2004 earthquake.
基金Supported by National Natural Science Foundation China (51209052,50979111)Heilongjiang Province Natural Science Foundation (QC2011C013)Supported by Harbin Science and Technology Development Innovation Foundation of Youth (KJ2010-026)