Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different....Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different.Due to the continuous and periodical properties of electromagnetic fields in the cell during its operation,electronic components involving two capacitors and a memristor are effective in mimicking these physical features.In this paper,a neural circuit is reconstructed by two capacitors connected by a memristor with periodical mem-conductance.It is found that the memristive neural circuit can present abundant firing patterns without stimulus.The Hamilton energy function is deduced using the Helmholtz theorem.Further,a neuronal network consisting of memristive neurons is proposed by introducing energy coupling.The controllability and flexibility of parameters give the model the ability to describe the dynamics and synchronization behavior of the system.展开更多
A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations...A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness.展开更多
When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic fi...When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance.展开更多
In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was pr...In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.展开更多
Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the uti...Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.展开更多
A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the key...A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.展开更多
The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engin...The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.展开更多
In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value ...In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.展开更多
This paper shows that the Josephson coupling energy and the zero-point energy have indelible rules on the superfluid density and the superconductivity in the high-T<SUB>c</SUB> cuprates. This paper also sh...This paper shows that the Josephson coupling energy and the zero-point energy have indelible rules on the superfluid density and the superconductivity in the high-T<SUB>c</SUB> cuprates. This paper also shows that the values of T<SUB>c</SUB> at underdoped and overdoped regions are determined by the damage conditions of the phase coherence in the classical and the quantum XY-models, respectively.展开更多
In this paper,we study a kind of dark energy models in the framework of the non-minimal coupling.With this kind of models,dark energy could cross the cosmological constant boundary,and at early time,dark energy could ...In this paper,we study a kind of dark energy models in the framework of the non-minimal coupling.With this kind of models,dark energy could cross the cosmological constant boundary,and at early time,dark energy could have 'tracking' behavior.展开更多
The essence of energy system transition is the"energy revolution':The development of the"resource-dominated"energy system with fossil energy as the mainstay has promoted human progress,but it has al...The essence of energy system transition is the"energy revolution':The development of the"resource-dominated"energy system with fossil energy as the mainstay has promoted human progress,but it has also triggered energy crisis and ecological environment crisis,which is not compatible with the new demands of the new round of scientific and technological revolution,industrial transformation,and sustainable human development.It is in urgent need to research and develop a new-type energy system in the context of carbon neutrality.In the framework of"technique-dominated"new green and intelligent energy system with"three new"of new energy,new power and new energy storage as the mainstay,the"super energy basin"concepts with the Ordos Basin,Nw China as a representative will reshape the concept and model of future energy exploration and development.In view of the"six inequalities"in global energy and the resource conditions of"abundant coal,insufficient oil and gas and infinite new energy"in China,it is suggested to deeply boost"China energy revolution',sticking to the six principles of independent energy production,green energy supply,secure energy reserve,efficient energy consumption,intelligent energy management,economical energy cost;enhance"energy scientific and technological innovation"by implementing technique-dominated"four major science and technology innovation projects',namely,clean coal project,oil production stabilization and gas production increasing project,new energy acceleration project,and green-intelligent energy project;implement"energy transition"by accelerating the green-dominated"four-modernization development',namely,fossil energy cleaning,large-scale new energy,coordinated centralized energy distribution,intelligent multi-energy management,so as to promote the exchange of two 80%s"in China's energy structure and construct the new green and intelligent energy system.展开更多
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalitie...This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.展开更多
Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezo...Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam.展开更多
The renewable energy industry has grown its contribution to the global energy mix, particularly in terms of electricity generation. This study investigates the implications of an increasing renewable energy share on O...The renewable energy industry has grown its contribution to the global energy mix, particularly in terms of electricity generation. This study investigates the implications of an increasing renewable energy share on OAPEC countries and proposes a comprehensible policy strategy for the region. Four main topics are discussed: scientific and engineering principles of renewable energy utilization, current strategies for electricity generation in each OAPEC member country, economic and environmental implications of the energy transition under two future scenarios, as well as political interactions between oil-consuming and oil-producing countries. Based on this study, realistic and cost-effective strategies are proposed for OAPEC countries to better leverage their significant renewable energy resources while stabilizing fossil fuel supplies and strengthening their position in the global energy market. To mitigate the negative impacts of the energy transition, OAPEC countries are encouraged to take the following steps: 1) Developing renewable energy in conjunction with fossil fuel resources to reduce local demand for fossil fuel and increase the supply for exportation;2) Reviewing economic policies, environmental regulations, and carbon taxes imposed by oil-consuming countries;3) Increasing investment in renewable energy infrastructure;4) Cooperating to achieve a balance between economic development and environmental protection.展开更多
To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulate...To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.展开更多
The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of ...The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided.展开更多
This paper analyzes Chinese household CO_2 emissions in 1994-2012 based on the Logarithmic Mean Divisia Index(LMDI) structure decomposition model, and discusses the relationship between household CO_2 emissions and ec...This paper analyzes Chinese household CO_2 emissions in 1994-2012 based on the Logarithmic Mean Divisia Index(LMDI) structure decomposition model, and discusses the relationship between household CO_2 emissions and economic growth based on a decoupling indicator.The results show that in 1994-2012, household CO_2 emissions grew in general and displayed an accelerated growth trend during the early 21 st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO_2 emission growth(an increase of 1.078 Gt CO_2) with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO_2 emission growth inhibition(0.723 Gt CO_2 emission reduction) with cumulative contribution rate of 38.27%. Meanwhile, household CO_2 emissions are in a weak state of decoupling in general. The change in CO_2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO_2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure ?uctuates between a weak and a strong decoupling state.展开更多
Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15...Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15 meV) and yield correct relative intensity. Based on the results, the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate.展开更多
The free energy at low temperature in 1D sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals method. For massive free sine-Gordon-Thirring model, free energy is obtained from ...The free energy at low temperature in 1D sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals method. For massive free sine-Gordon-Thirring model, free energy is obtained from perturbation expansion of functional determinant. Moreover, the free energy of massive model is calculated by use of an auxiliary Bose field method.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12302070)the Ningxia Science and Technology Leading Talent Training Program(Grant No.2022GKLRLX04)。
文摘Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different.Due to the continuous and periodical properties of electromagnetic fields in the cell during its operation,electronic components involving two capacitors and a memristor are effective in mimicking these physical features.In this paper,a neural circuit is reconstructed by two capacitors connected by a memristor with periodical mem-conductance.It is found that the memristive neural circuit can present abundant firing patterns without stimulus.The Hamilton energy function is deduced using the Helmholtz theorem.Further,a neuronal network consisting of memristive neurons is proposed by introducing energy coupling.The controllability and flexibility of parameters give the model the ability to describe the dynamics and synchronization behavior of the system.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘A robust low-carbon economic optimal scheduling method that considers source-load uncertainty and hydrogen energy utilization is developed.The proposed method overcomes the challenge of source-load random fluctuations in integrated energy systems(IESs)in the operation scheduling problem of integrated energy production units(IEPUs).First,to solve the problem of inaccurate prediction of renewable energy output,an improved robust kernel density estimation method is proposed to construct a data-driven uncertainty output set of renewable energy sources statistically and build a typical scenario of load uncertainty using stochastic scenario reduction.Subsequently,to resolve the problem of insufficient utilization of hydrogen energy in existing IEPUs,a robust low-carbon economic optimal scheduling model of the source-load interaction of an IES with a hydrogen energy system is established.The system considers the further utilization of energy using hydrogen energy coupling equipment(such as hydrogen storage devices and fuel cells)and the comprehensive demand response of load-side schedulable resources.The simulation results show that the proposed robust stochastic optimization model driven by data can effectively reduce carbon dioxide emissions,improve the source-load interaction of the IES,realize the efficient use of hydrogen energy,and improve system robustness.
基金Project supported by the National Natural Science Foundation of China(Grant No.12062009)the Gansu National Science of Foundation,China(Grant No.20JR5RA473)。
文摘When charged bodies come up close to each other,the field energy is diffused and their states are regulated under bidirectional field coupling.For biological neurons,the diversity in intrinsic electric and magnetic field energy can create synaptic connection for fast energy balance and synaptic current is passed across the synapse channel;as a result,energy is pumped and exchanged to induce synchronous firing modes.In this paper,a capacitor is used to connect two neural circuits and energy propagation is activated along the coupling channel.The intrinsic field energy in the two neural circuits is exchanged and the coupling intensity is controlled adaptively using the Heaviside function.Some field energy is saved in the coupling channel and is then sent back to the coupled neural circuits to reach energy balance.Therefore the circuits can reach possible energy balance and complete synchronization.It is possible that the diffusive energy of the coupled neurons inspires the synaptic connections to grow stronger for possible energy balance.
文摘In view of the problem that a single modeling method cannot predict the distribution of microfacies, a new idea of coupling modeling method to comprehensively predict the distribution of sedimentary microfacies was proposed, breaking the tradition that different sedimentary microfacies used the same modeling method in the past. Because different sedimentary microfacies have different distribution characteristics and geometric shapes, it is more accurate to select different simulation methods for prediction. In this paper, the coupling modeling method was to establish the distribution of sedimentary microfacies with simple geometry through the point indicating process simulation, and then predict the microfacies with complex spatial distribution through the sequential indicator simulation method. Taking the DC block of Bohai basin as an example, a high-precision reservoir sedimentary microfacies model was established by the above coupling modeling method, and the model verification results showed that the sedimentary microfacies model had a high consistency with the underground. The coupling microfacies modeling method had higher accuracy and reliability than the traditional modeling method, which provided a new idea for the prediction of sedimentary microfacies.
基金financially supported by research grants from the Natural Science Foundation of China [Grant No. 62074022 (K.S.), 12004057 (Y.J.Z.), 52173235 (M.L.)]the Natural Science Foundation of Chongqing [cstc2021jcyj-jqX0015 (K.S.)]+3 种基金Chongqing Talent Plan [cstc2021ycjh-bgzxm0334 (S.S.C.), CQYC2021059206 (K.S.)]Fundamental Research Funds for the Central Universities [No. 2020CDJQY-A055 (K.S.)]the Key Laboratory of Low-grade Energy Utilization Technologies and Systems [Grant No. LLEUTS-201901 (K.S.)]support from Chongqing Postgraduate Research and Innovation Project (CYS22032)。
文摘Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials.
基金Projects (51175162, 50805045) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.
基金Supported by the National Natural Science Foundation under Grant No.10272034the Doctoral Education Foundation under Grant No.20060217020
文摘The fluid-solid coupling theory, an interdisciplinary science between hydrodynamics and solid mechanics, is an important tool for response analysis and direct design of structures in naval architecture and ocean engineering. By applying the corresponding relations between generalized forces and generalized displacements, convolutions were performed between the basic equations of elasto-dynamics in the primary space and corresponding virtual quantities. The results were integrated and then added algebraically. In light of the fact that body forces and surface forces are both follower forces, the generalized quasi-complementary energy principle with two kinds of variables for an initial value problem is established in non-conservative systems. Using the generalized quasi-complementary energy principle to deal with the fluid-solid coupling problem and to analyze the dynamic response of structures, a method for using two kinds of variables simultaneously for calculation of force and displacement was derived.
基金The project supported by the Key Project of Chinese Ministry of Education (03145)the Science Fund of Southwest Jiaotong University
文摘In the fracture problems of hydrophilic elastic materials under coupling effects of heat conduction, moisture diffusion and mechanical deformation, the conventional J-integral is no longer path independent. The value of J is unequal to the energy release rate in hygrothermal coupling cases. In the present paper, we derived a general form of the energy release rate for hygrothermal fracture problems of the hydrophilic elastic materials on the basis of energy balance equation in cracked areas. By introducing the constitutive relations and the essential equations of irreversible thermodynamics, a specific expression of the energy release rate was obtained, and the expression can be reformmulated as path independent integrals, which is equivalent to the energy release rate of the fracture body. The path independence of the integrals is then verified numerically.
文摘This paper shows that the Josephson coupling energy and the zero-point energy have indelible rules on the superfluid density and the superconductivity in the high-T<SUB>c</SUB> cuprates. This paper also shows that the values of T<SUB>c</SUB> at underdoped and overdoped regions are determined by the damage conditions of the phase coherence in the classical and the quantum XY-models, respectively.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No.ZR2009AL001
文摘In this paper,we study a kind of dark energy models in the framework of the non-minimal coupling.With this kind of models,dark energy could cross the cosmological constant boundary,and at early time,dark energy could have 'tracking' behavior.
文摘The essence of energy system transition is the"energy revolution':The development of the"resource-dominated"energy system with fossil energy as the mainstay has promoted human progress,but it has also triggered energy crisis and ecological environment crisis,which is not compatible with the new demands of the new round of scientific and technological revolution,industrial transformation,and sustainable human development.It is in urgent need to research and develop a new-type energy system in the context of carbon neutrality.In the framework of"technique-dominated"new green and intelligent energy system with"three new"of new energy,new power and new energy storage as the mainstay,the"super energy basin"concepts with the Ordos Basin,Nw China as a representative will reshape the concept and model of future energy exploration and development.In view of the"six inequalities"in global energy and the resource conditions of"abundant coal,insufficient oil and gas and infinite new energy"in China,it is suggested to deeply boost"China energy revolution',sticking to the six principles of independent energy production,green energy supply,secure energy reserve,efficient energy consumption,intelligent energy management,economical energy cost;enhance"energy scientific and technological innovation"by implementing technique-dominated"four major science and technology innovation projects',namely,clean coal project,oil production stabilization and gas production increasing project,new energy acceleration project,and green-intelligent energy project;implement"energy transition"by accelerating the green-dominated"four-modernization development',namely,fossil energy cleaning,large-scale new energy,coordinated centralized energy distribution,intelligent multi-energy management,so as to promote the exchange of two 80%s"in China's energy structure and construct the new green and intelligent energy system.
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
文摘This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.
基金Project supported by the National Natural Science Foundation of China(Grant No.51205302)the Fundamental Research Funds for the Central Universities,China(Grant No.K5051304011)
文摘Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam.
文摘The renewable energy industry has grown its contribution to the global energy mix, particularly in terms of electricity generation. This study investigates the implications of an increasing renewable energy share on OAPEC countries and proposes a comprehensible policy strategy for the region. Four main topics are discussed: scientific and engineering principles of renewable energy utilization, current strategies for electricity generation in each OAPEC member country, economic and environmental implications of the energy transition under two future scenarios, as well as political interactions between oil-consuming and oil-producing countries. Based on this study, realistic and cost-effective strategies are proposed for OAPEC countries to better leverage their significant renewable energy resources while stabilizing fossil fuel supplies and strengthening their position in the global energy market. To mitigate the negative impacts of the energy transition, OAPEC countries are encouraged to take the following steps: 1) Developing renewable energy in conjunction with fossil fuel resources to reduce local demand for fossil fuel and increase the supply for exportation;2) Reviewing economic policies, environmental regulations, and carbon taxes imposed by oil-consuming countries;3) Increasing investment in renewable energy infrastructure;4) Cooperating to achieve a balance between economic development and environmental protection.
基金Project(51275211)supported by the National Natural Science Foundation of ChinaProject(11KJA580001)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProject(CXZZ12_0665)supported by the Postgraduate Innovation Natural Science Foundation of Jiangsu Province,China
文摘To improve high-speed road feel and enhance energetic efficiency of hydraulic power steering(HPS) system in heavy-duty vehicles, an electromagnetic slip coupling(ESC) was applied to the steering system, which regulated discharge flow of steering pump to realize variable assist characteristic as well as uniquely transfer on-demand power from engine to steering pump. The model of ESC was established and the dynamic characteristics of ESC were presented by the way of simulation and experiment. Upon the layout of the assist characteristics, output torque of ESC was derived. Based on the ESC model, the output torque characteristics of ESC were simulated under steering situation and straight driving situation, respectively. The consistency of simulated ESC output torque and the one deduced from assist characteristics verifies the correctness of the ESC dynamic model. To illustrate energy saving characteristics of ESC-HPS, energy consumption comparison of ESC-HPS and conventional HPS was carried out qualitatively and quantitatively. It follows that the energy consumption of ESC-HPS decreases by 50% compared with that of HPS.
基金Shanghai Municipal Science & Technology Projects, China (No. 09DZ1203300, No. 10JC1415200)
文摘The production and energy coupling system is used to mainly present energy flow, material flow, information flow, and their coupling interaction. Through the modeling and simulation of this system, the performance of energy flow can be analyzed and optimized in the process industry. In order to study this system, the component based hybrid Petri net methodology (CpnHPN) is proposed, synthesizing a number of extended Petri net methods and using the concept of energy place, material place, and information place. Through the interface place in CpnHPN, the component based encapsulation is established, which enables the production and energy coupling system to be built, analyzed, and optimized on the multi-level framework. Considering the block and brief simulation for hybrid system, the CpnHPN model is simulated with Simulink/Stateflow. To illustrate the use of the proposed methodology, the application of CpnHPN in the energy optimization of chlorine balance system is provided.
基金supported by the National Natural Science Foundation of China (NSFC) under Grant No. 71573015, 71303019, 71173206, and 71521002
文摘This paper analyzes Chinese household CO_2 emissions in 1994-2012 based on the Logarithmic Mean Divisia Index(LMDI) structure decomposition model, and discusses the relationship between household CO_2 emissions and economic growth based on a decoupling indicator.The results show that in 1994-2012, household CO_2 emissions grew in general and displayed an accelerated growth trend during the early 21 st century. Economic growth leading to an increase in energy consumption is the main driving factor of CO_2 emission growth(an increase of 1.078 Gt CO_2) with cumulative contribution rate of 55.92%, while the decline in energy intensity is the main cause of CO_2 emission growth inhibition(0.723 Gt CO_2 emission reduction) with cumulative contribution rate of 38.27%. Meanwhile, household CO_2 emissions are in a weak state of decoupling in general. The change in CO_2 emissions caused by population and economic growth shows a weak decoupling and expansive decoupling state, respectively. The CO_2 emission change caused by energy intensity is in a state of strong decoupling, and the change caused by energy consumption structure ?uctuates between a weak and a strong decoupling state.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474085)
文摘Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15 meV) and yield correct relative intensity. Based on the results, the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate.
基金The project supported by the Natural Science Foundation of Sichuan Normal University
文摘The free energy at low temperature in 1D sine-Gordon-Thirring model with impurity coupling is studied by means of functional integrals method. For massive free sine-Gordon-Thirring model, free energy is obtained from perturbation expansion of functional determinant. Moreover, the free energy of massive model is calculated by use of an auxiliary Bose field method.