Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv...Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.展开更多
The coagulation bath system of carbon fiber precursor is a complicated and multivariable coupling system. Based on the model of industrial production,the full dynamic decoupling control of the coagulation bath system ...The coagulation bath system of carbon fiber precursor is a complicated and multivariable coupling system. Based on the model of industrial production,the full dynamic decoupling control of the coagulation bath system of carbon fiber precursor is achieved in combination with multivariable feed-forward-like decoupling and proportional-integral-differential( PID) control. Compared with the conventional PID decoupling control,the experiment results show that the proposed method has a better control effect. The use of the controller can achieve complete decoupling of three parameters from coagulation bath system. The method should have great applications.展开更多
The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concer...The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concerning the basic security and operation of the neonatal incubators. The prototype has been developed and is important because the cockpit is a new concept of medical equipment of neonatal life support. There was a modeling of the system of heating of the incubator using the concepts of system identification with the purpose of finding a mathematical model that describes the dynamic behavior of the system. Then, design and implement the strategy of feedback control with digital PID (proportional-integral-derivative) algorithm. The model allowed the design and implementation of a digital PID controller that meets in a satisfactory manner with the requirements, in accordance with the international standard. The control system implemented in the neonatal incubator ESVIN improved the effectiveness of the neonatal life support equipment in regard to temperature controller of the cockpit.展开更多
Underwater spherical robots are good assistants for ocean exploration,where motion control algorithms play a vital role.Conventional motion control algorithms cannot eliminate the coupling relationship between various...Underwater spherical robots are good assistants for ocean exploration,where motion control algorithms play a vital role.Conventional motion control algorithms cannot eliminate the coupling relationship between various motion directions,which will cause the motion control of various directions to interfere with one other and significantly affect the control effect.This study proposes a new decoupling motion control algorithm based on the robot attitude calculation for an underwater spherical robot designed for offshore,shallow water,and narrow terrain.The proposed method uses four fuzzy proportional-integral-derivative(PID)controllers to independently control the robot’s movement in all directions.Experiments show that the motion control algorithm proposed in this study can significantly improve the flexibility and accuracy of the movement of underwater spherical robots.展开更多
基金Supported by Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China
文摘Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
基金the Key Project of the National Nature Science Foundation of China(No.61134009)Program for Changjiang Scholars and Innovation Research Team in University from the Ministry of Education,China(No.IRT1220)+1 种基金Specialized Research Fund for Shanghai Leading Talents,Project of the Shanghai Committee of Science and Technology,China(No.13JC1407500)the Fundamental Research Funds for the Central Universities,China(No.2232012A3-04)
文摘The coagulation bath system of carbon fiber precursor is a complicated and multivariable coupling system. Based on the model of industrial production,the full dynamic decoupling control of the coagulation bath system of carbon fiber precursor is achieved in combination with multivariable feed-forward-like decoupling and proportional-integral-differential( PID) control. Compared with the conventional PID decoupling control,the experiment results show that the proposed method has a better control effect. The use of the controller can achieve complete decoupling of three parameters from coagulation bath system. The method should have great applications.
文摘The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concerning the basic security and operation of the neonatal incubators. The prototype has been developed and is important because the cockpit is a new concept of medical equipment of neonatal life support. There was a modeling of the system of heating of the incubator using the concepts of system identification with the purpose of finding a mathematical model that describes the dynamic behavior of the system. Then, design and implement the strategy of feedback control with digital PID (proportional-integral-derivative) algorithm. The model allowed the design and implementation of a digital PID controller that meets in a satisfactory manner with the requirements, in accordance with the international standard. The control system implemented in the neonatal incubator ESVIN improved the effectiveness of the neonatal life support equipment in regard to temperature controller of the cockpit.
基金This work was supported by National Natural Science Foundation of China(Grant Nos.61773064,61503028).
文摘Underwater spherical robots are good assistants for ocean exploration,where motion control algorithms play a vital role.Conventional motion control algorithms cannot eliminate the coupling relationship between various motion directions,which will cause the motion control of various directions to interfere with one other and significantly affect the control effect.This study proposes a new decoupling motion control algorithm based on the robot attitude calculation for an underwater spherical robot designed for offshore,shallow water,and narrow terrain.The proposed method uses four fuzzy proportional-integral-derivative(PID)controllers to independently control the robot’s movement in all directions.Experiments show that the motion control algorithm proposed in this study can significantly improve the flexibility and accuracy of the movement of underwater spherical robots.