In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without ...In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.展开更多
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis i...Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.展开更多
In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. ...In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. The tasks of noise reduction and parameter estimation which were fulfilled separately before are combined iteratively. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior work can be viewed as special cases of this general framework. The simulations for noise reduction and parameter estimation of contaminated chaotic time series show improved performance of our method compared with previous work.展开更多
This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characte...This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.展开更多
Objective To recognize the spatial and temporal characteristics of iodine deficiency disorders(IDD),China national IDD surveillance data for the years of 1995–2018 were analyzed.Methods Time series analysis was used ...Objective To recognize the spatial and temporal characteristics of iodine deficiency disorders(IDD),China national IDD surveillance data for the years of 1995–2018 were analyzed.Methods Time series analysis was used to describe and predict the IDD related indicators,and spatial analysis was used to analyze the spatial distribution of salt iodine levels.Results In China,the median urinary iodine concentration increased in 1995–1997,then decreased to adequate levels,and are expected to remain appropriate in 2019–2022.The goiter rate continually decreased and is expected to be maintained at a low level.Since 2002,the coverage rates of iodized salt and the consumption rates of qualified iodized salt(the percentage of qualified iodized salt in all tested salt) increased and began to decline in 2012;they are expected to continue to decrease.Spatial epidemiological analysis indicated a positive spatial correlation in 2016–2018 and revealed feature regarding the spatial distribution of salt related indicators in coastal areas and areas near iodine-excess areas.Conclusions Iodine nutrition in China showed gradual improvements.However,a recent decline has been observed in some areas following changes in the iodized salt supply in China.In the future,more regulations regarding salt management should be issued to strengthen IDD control and prevention measures,and avoid the recurrence of IDD.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
In order to study the hydrodynamic characteristics of the karst aquifers in northern China,time series analyses(correlation and spectral analysis in addition with hydrograph recession analysis)are applied on Baotu Spr...In order to study the hydrodynamic characteristics of the karst aquifers in northern China,time series analyses(correlation and spectral analysis in addition with hydrograph recession analysis)are applied on Baotu Spring and Heihu Spring in Jinan karst spring system,a typical karst spring system in northern China.Results show that the auto-correlation coefficient of spring water level reaches the value of 0.2 after 123 days and 117 days for Baotu Spring and Heihu Spring,respectively.The regulation time obtained from the simple spectral density function in the same period is 187 days and 175 days for Baotu Spring and Heihu Spring.The auto-correlation coefficient of spring water level reaches the value of 0.2 in 34-82 days,and regulation time ranges among 40-59 days for every single hydrological year.The delay time between precipitation and spring water level obtained from cross correlation function is around 56 days for the period of 2012-2019,and varies among 30-79 days for every single hydrological year.In addition,the spectral bands in cross amplitude functions and gain functions are small with 0.02,and the values in the coherence functions are small.All these behaviors illustrate that Jinan karst spring system has a strong memory effect,large storage capacity,noticeable regulation effect,and time series analysis is a useful tool for studying the hydrodynamic characteristics of karst spring system in northern China.展开更多
We propose a new approach to construct an extended Wiener measure using nonstandard analysis by E. Nelson. For the new definition we construct non-standardized convolution of probability measure for independent random...We propose a new approach to construct an extended Wiener measure using nonstandard analysis by E. Nelson. For the new definition we construct non-standardized convolution of probability measure for independent random variables. As an application, we consider a simple calculation of financial time series.展开更多
We study the correlation between detrended fluctuation analysis(DFA) and the Lempel-Ziv complexity(LZC) in nonlinear time series analysis in this paper.Typical dynamic systems including a logistic map and a Duffin...We study the correlation between detrended fluctuation analysis(DFA) and the Lempel-Ziv complexity(LZC) in nonlinear time series analysis in this paper.Typical dynamic systems including a logistic map and a Duffing model are investigated.Moreover,the influence of Gaussian random noise on both the DFA and LZC are analyzed.The results show a high correlation between the DFA and LZC,which can quantify the non-stationarity and the nonlinearity of the time series,respectively.With the enhancement of the random component,the exponent α and the normalized complexity index C show increasing trends.In addition,C is found to be more sensitive to the fluctuation in the nonlinear time series than α.Finally,the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve,and an effective fault diagnosis result is obtained.展开更多
Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been success...Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been successfully used in a number of problem domains in time series forecasting. Due to power and flexibility, Box-Jenkins ARIMA model has gained enormous popularity in many areas and research practice for the last three decades. More recently, the neural networks have been shown to be a promising alternative tool for modeling and forecasting owing to their ability to capture the nonlinearity in the data. However, despite the popularity and the superiority of ARIMA and ANN models, the empirical forecasting performance has been rather mixed so that no single method is best in every situation. In this study, a hybrid ARIMA and neural networks model to time series forecasting is proposed. The basic idea behind the model combination is to use each model’s unique features to capture different patterns in the data. With three real data sets, empirical results evidently show that the hybrid model outperforms ARIMA and ANN model noticeably in terms of forecasting accuracy used in isolation.展开更多
FMS is a sort of highly automatic machining system, how to ensure partquality is master key to system highly active running. At first, series of machining dimension andprocess capability of flexible manufacturing syst...FMS is a sort of highly automatic machining system, how to ensure partquality is master key to system highly active running. At first, series of machining dimension andprocess capability of flexible manufacturing system(FMS), is analyzed. Result of its, strongself-correlation of data series shows that time series analysis is applicable to data seriesanalyzed. Based on-line modeling and forecasting for data series, principle and method of feedbackcompensation control is proposed. On a foundation of the virtual instrument platform, Labview ofnational instrument (NI), FMS dimension and process capability monitoring system(monitoring system)is developed. In practice, it is proved that part quality and process capability of FMS are greatlyimproved.展开更多
Purpose: One of the main indicators of scientific production is the number of papers published in scholarly journals. Turkey ranks 18th place in the world based on the number of scholarly publications. The objective ...Purpose: One of the main indicators of scientific production is the number of papers published in scholarly journals. Turkey ranks 18th place in the world based on the number of scholarly publications. The objective of this paper is to find out if the monetary support program initiated in 1993 by the Turkish Scientific and Technological Research Council (TUBITAK) to incentivize researchers and increase the number, impact, and quality of international publications has been effective in doing so.Design/methodology/approach: We analyzed some 390,000 publications with Turkish affiliations listed in the Web of Science (WoS) database between 1976 and 2015 along with about 157,000 supported ones between 1997 and 2015. We used the interrupted time series (ITS) analysis technique (also known as "quasi-experimental time series analysis" or "intervention analysis") to test if TOBITAK's support program helped increase the number of publications. We defined ARIMA (1,1,0) model for ITS data and observed the impact of TOBiTAK's support program in 1994, 1997, and 2003 (after one, four and 10 years of its start, respectively). The majority of publications (93%) were full papers (articles), which were used as the experimental group while other types of contributions functioned as the control group. We also carried out a multiple regression analysis.Findings: TUBITAK's support program has had negligible effect on the increase of the number of papers with Turkish affiliations. Yet, the number of other types of contributions continued to increase even though they were not well supported, suggesting that TUBITAK's support program is probably not the main factor causing the increase in the number of papers with Turkish affiliations. Research limitations: Interrupted time series analysis shows if the "intervention" has had any significant effect on the dependent variable but it does not explain what caused the increase in the number of papers if it was not the intervention. Moreover, except the"intervention", other "event(s)" that might affect the time series data (e.g., increase in the number of research personnel over the years) should not occur during the period of analysis, a prerequisite that is beyond the control of the researcher. Practical implications: TUBITAK's "cash-for-publication" program did not seem to have direct impact on the increase of the number of papers published by Turkish authors, suggesting that small amounts of payments are not much of an incentive for authors to publish more. It might perhaps be a better strategy to concentrate limited resources on a few high impact projects rather than to disperse them to thousands of authors as "micropayments." Originality/value: Based on 25 years' worth of payments data, this is perhaps one of the first large-scale studies showing that "cash-for-publication" policies or "piece rates" paid to researchers tend to have little or no effect on the increase of researchers' productivity. The main finding of this paper has some implications for countries wherein publication subsidies are used as an incentive to increase the number and quality of papers published in international journals. They should be prepared to consider reviewing their existing support programs (based usually on bibliometric measures such as journal impact factors) and revising their reward policies.展开更多
We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including...We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
Unprecedented industrialization and urbanization have led to China’s poor energy efficiency. In response, the Chinese government has set goals to reduce energy consumption that may include implementing new tax polici...Unprecedented industrialization and urbanization have led to China’s poor energy efficiency. In response, the Chinese government has set goals to reduce energy consumption that may include implementing new tax policies. In this paper, we investigate the relationship between energy intensity, an indicator that measures the efficiency of energy consumption, and two sources of government revenue in China (i.e., value-added tax (VAT) and corporate income tax). As a case study, we developed a Granger co-integration model to analyze the dynamic relationship of energy intensity, VAT and corporate income tax in the non-ferrous metal industry, Jiangxi Province, China, between 1996 and 2010. Augmented Dickey-Fuller tests were used to validate the model. In our time series analyses, we found when controlling for corporate income tax, a one log unit increase of VAT resulted in a decrease of 1.17 log units of energy intensity. However, when controlling for VAT, a one log unit increase of corporate income tax resulted in an increase of 0.34 log units of energy intensity. Understanding the relationship between energy intensity and taxation in industries that consume high volumes of energy can greatly enhance China’s goal to reduce energy consumption. We believe our findings add to this on-going discussion.展开更多
BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their s...BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their spread is essential for developing effective strategies,heightening the requirement for early warning to deal with such a major public health threat.AIM To monitor HB and HC epidemics by the design of a paradigmatic seasonal autoregressive fractionally integrated moving average(SARFIMA)for projections into 2030,and to compare the effectiveness with the seasonal autoregressive integrated moving average(SARIMA).METHODS Monthly HB and HC incidence cases in China were obtained from January 2004 to June 2023.Descriptive analysis and the Hodrick-Prescott method were employed to identify trends and seasonality.Two periods(from January 2004 to June 2022 and from January 2004 to December 2015,respectively)were used as the training sets to develop both models,while the remaining periods served as the test sets to evaluate the forecasting accuracy.RESULTS There were incidents of 23400874 HB cases and 3590867 HC cases from January 2004 to June 2023.Overall,HB remained steady[average annual percentage change(AAPC)=0.44,95%confidence interval(95%CI):-0.94-1.84]while HC was increasing(AAPC=8.91,95%CI:6.98-10.88),and both had a peak in March and a trough in February.In the 12-step-ahead HB forecast,the mean absolute deviation(15211.94),root mean square error(18762.94),mean absolute percentage error(0.17),mean error rate(0.15),and root mean square percentage error(0.25)under the best SARFIMA(3,0,0)(0,0.449,2)12 were smaller than those under the best SARIMA(3,0,0)(0,1,2)12(16867.71,20775.12,0.19,0.17,and 0.27,respectively).Similar results were also observed for the 90-step-ahead HB,12-step-ahead HC,and 90-step-ahead HC forecasts.The predicted HB incidents totaled 9865400(95%CI:7508093-12222709)cases and HC totaled 1659485(95%CI:856681-2462290)cases during 2023-2030.CONCLUSION Under current interventions,China faces enormous challenges to eliminate HB and HC epidemics by 2030,and effective strategies must be reinforced.The integration of SARFIMA into public health for the management of HB and HC epidemics can potentially result in more informed and efficient interventions,surpassing the capabilities of SARIMA.展开更多
To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESD...To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESDD is the key of flashover on polluted insulator.The ESDD value of insulator can be forecasted by the method of nonlinear time series analysis of the ESDD time series and a forecasting model of polluted insulator flashover is proposed in the paper.The forecasting model consists of two artificial neural networks that reflect relationship of environment,ESDD and flashover probability.The first is used to estimate the ESDD time series of insulator and the second is employed to calculate the probability of the flashover.A series of artificial pollution tests show that the results of the forecasting model is acceptable.展开更多
For many years planning and management of water resources involved modeling and simulation of temporally sequenced and stochastic hydrologic events. Rainfall process is one of such hydrologic events which calls for ti...For many years planning and management of water resources involved modeling and simulation of temporally sequenced and stochastic hydrologic events. Rainfall process is one of such hydrologic events which calls for time series analysis to better understand interesting features contained in it. Many statistics-based methods are available to simulate and predict such a kind of time series. Autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models are among those methods. In this study a search was conducted to identify and examine a capable stochastic model for annual rainfall series (over the period 1954-2015) of Debre Markos town, Ethiopia. For the historical series, normality and stationarity tests were conducted to check if the time series was from a normally distributed and stationary process. Shapiro-Wilk (SW), Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests were among the normality tests conducted whereas, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were among the stationarity tests. Based on the test results, logarithmic transformation and first order differencing were performed to bring the original series to a normal and stationary series. Results of model fitting showed that three models namely, AR (2), MA (1) and ARMA (2,1) were capable in describing the annual rainfall series. A diagnostic check was performed on model residuals and ARMA (2,1) was found to be the best model among the candidates. Furthermore, three information criteria: Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC) were used to select the best model. In this regard, too, the least information discrepancy between the underlying process and the fitted model was obtained from ARMA (2,1) model. Hence, this model was considered as a better representative of the annual rainfall values and was used to predict five years ahead values. The mean absolute percentage error (MAPE) of the prediction was found to be less than 10%. Thus, ARMA (2,1) model could be used for forecasting and simulation of annual rainfall for planning, management and design of water resources systems in Debre Markos town.展开更多
文摘In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金The National High Technology Research and Devel-opment Program of China (863Program) (No2006AA04Z416)the National Natural Science Foundation of China (No50538020)
文摘Aiming at the problem of on-line damage diagnosis in structural health monitoring (SHM), an algorithm of feature extraction and damage alarming based on auto-regressive moving-average (ARMA) time series analysis is presented. The monitoring data were first modeled as ARMA models, while a principalcomponent matrix derived from the AR coefficients of these models was utilized to establish the Mahalanobisdistance criterion functions. Then, a new damage-sensitive feature index DDSF is proposed. A hypothesis test involving the t-test method is further applied to obtain a decision of damage alarming as the mean value of DDSF had significantly changed after damage. The numerical results of a three-span-girder model shows that the defined index is sensitive to subtle structural damage, and the proposed algorithm can be applied to the on-line damage alarming in SHM.
文摘In this paper, we propose a cross reference method for nonlinear time series analyzing in semi blind case, that is, the dynamic equations modeling the time series are known but the corresponding parameters are not. The tasks of noise reduction and parameter estimation which were fulfilled separately before are combined iteratively. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior work can be viewed as special cases of this general framework. The simulations for noise reduction and parameter estimation of contaminated chaotic time series show improved performance of our method compared with previous work.
基金The National Natural Science Foundation of China(No.61273236)the Natural Science Foundation of Jiangsu Province(No.BK2010239)the Ph.D.Programs Foundation of Ministry of Education of China(No.200802861061)
文摘This paper presents a novel approach to identify and correct the gross errors in the microelectromechanical system (MEMS) gyroscope used in ground vehicles by means of time series analysis. According to the characteristics of autocorrelation function (ACF) and partial autocorrelation function (PACF), an autoregressive integrated moving average (ARIMA) model is roughly constructed. The rough model is optimized by combining with Akaike's information criterion (A/C), and the parameters are estimated based on the least squares algorithm. After validation testing, the model is utilized to forecast the next output on the basis of the previous measurement. When the difference between the measurement and its prediction exceeds the defined threshold, the measurement is identified as a gross error and remedied by its prediction. A case study on the yaw rate is performed to illustrate the developed algorithm. Experimental results demonstrate that the proposed approach can effectively distinguish gross errors and make some reasonable remedies.
基金partly supported by the National Natural Science Foundation of China [81773370 and 82173638]the Natural Science Foundation of Heilongjiang Province [TD2019H001]
文摘Objective To recognize the spatial and temporal characteristics of iodine deficiency disorders(IDD),China national IDD surveillance data for the years of 1995–2018 were analyzed.Methods Time series analysis was used to describe and predict the IDD related indicators,and spatial analysis was used to analyze the spatial distribution of salt iodine levels.Results In China,the median urinary iodine concentration increased in 1995–1997,then decreased to adequate levels,and are expected to remain appropriate in 2019–2022.The goiter rate continually decreased and is expected to be maintained at a low level.Since 2002,the coverage rates of iodized salt and the consumption rates of qualified iodized salt(the percentage of qualified iodized salt in all tested salt) increased and began to decline in 2012;they are expected to continue to decrease.Spatial epidemiological analysis indicated a positive spatial correlation in 2016–2018 and revealed feature regarding the spatial distribution of salt related indicators in coastal areas and areas near iodine-excess areas.Conclusions Iodine nutrition in China showed gradual improvements.However,a recent decline has been observed in some areas following changes in the iodized salt supply in China.In the future,more regulations regarding salt management should be issued to strengthen IDD control and prevention measures,and avoid the recurrence of IDD.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
基金This study is supported by the geological survey project:National Glacier and Desertification Remote Sensing Geological Survey(DD20190515)Youth Innovation Fund of China Aero Geophysical Prospecting and Remote Sensing Center for Natural Resources(2020YFL18).
文摘In order to study the hydrodynamic characteristics of the karst aquifers in northern China,time series analyses(correlation and spectral analysis in addition with hydrograph recession analysis)are applied on Baotu Spring and Heihu Spring in Jinan karst spring system,a typical karst spring system in northern China.Results show that the auto-correlation coefficient of spring water level reaches the value of 0.2 after 123 days and 117 days for Baotu Spring and Heihu Spring,respectively.The regulation time obtained from the simple spectral density function in the same period is 187 days and 175 days for Baotu Spring and Heihu Spring.The auto-correlation coefficient of spring water level reaches the value of 0.2 in 34-82 days,and regulation time ranges among 40-59 days for every single hydrological year.The delay time between precipitation and spring water level obtained from cross correlation function is around 56 days for the period of 2012-2019,and varies among 30-79 days for every single hydrological year.In addition,the spectral bands in cross amplitude functions and gain functions are small with 0.02,and the values in the coherence functions are small.All these behaviors illustrate that Jinan karst spring system has a strong memory effect,large storage capacity,noticeable regulation effect,and time series analysis is a useful tool for studying the hydrodynamic characteristics of karst spring system in northern China.
文摘We propose a new approach to construct an extended Wiener measure using nonstandard analysis by E. Nelson. For the new definition we construct non-standardized convolution of probability measure for independent random variables. As an application, we consider a simple calculation of financial time series.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51175316)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103108110006)
文摘We study the correlation between detrended fluctuation analysis(DFA) and the Lempel-Ziv complexity(LZC) in nonlinear time series analysis in this paper.Typical dynamic systems including a logistic map and a Duffing model are investigated.Moreover,the influence of Gaussian random noise on both the DFA and LZC are analyzed.The results show a high correlation between the DFA and LZC,which can quantify the non-stationarity and the nonlinearity of the time series,respectively.With the enhancement of the random component,the exponent α and the normalized complexity index C show increasing trends.In addition,C is found to be more sensitive to the fluctuation in the nonlinear time series than α.Finally,the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve,and an effective fault diagnosis result is obtained.
文摘Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been successfully used in a number of problem domains in time series forecasting. Due to power and flexibility, Box-Jenkins ARIMA model has gained enormous popularity in many areas and research practice for the last three decades. More recently, the neural networks have been shown to be a promising alternative tool for modeling and forecasting owing to their ability to capture the nonlinearity in the data. However, despite the popularity and the superiority of ARIMA and ANN models, the empirical forecasting performance has been rather mixed so that no single method is best in every situation. In this study, a hybrid ARIMA and neural networks model to time series forecasting is proposed. The basic idea behind the model combination is to use each model’s unique features to capture different patterns in the data. With three real data sets, empirical results evidently show that the hybrid model outperforms ARIMA and ANN model noticeably in terms of forecasting accuracy used in isolation.
基金This project is supported by Weaponry Advanced Fund Item of China (No.2000JS38.5.1 OT2001)
文摘FMS is a sort of highly automatic machining system, how to ensure partquality is master key to system highly active running. At first, series of machining dimension andprocess capability of flexible manufacturing system(FMS), is analyzed. Result of its, strongself-correlation of data series shows that time series analysis is applicable to data seriesanalyzed. Based on-line modeling and forecasting for data series, principle and method of feedbackcompensation control is proposed. On a foundation of the virtual instrument platform, Labview ofnational instrument (NI), FMS dimension and process capability monitoring system(monitoring system)is developed. In practice, it is proved that part quality and process capability of FMS are greatlyimproved.
文摘Purpose: One of the main indicators of scientific production is the number of papers published in scholarly journals. Turkey ranks 18th place in the world based on the number of scholarly publications. The objective of this paper is to find out if the monetary support program initiated in 1993 by the Turkish Scientific and Technological Research Council (TUBITAK) to incentivize researchers and increase the number, impact, and quality of international publications has been effective in doing so.Design/methodology/approach: We analyzed some 390,000 publications with Turkish affiliations listed in the Web of Science (WoS) database between 1976 and 2015 along with about 157,000 supported ones between 1997 and 2015. We used the interrupted time series (ITS) analysis technique (also known as "quasi-experimental time series analysis" or "intervention analysis") to test if TOBITAK's support program helped increase the number of publications. We defined ARIMA (1,1,0) model for ITS data and observed the impact of TOBiTAK's support program in 1994, 1997, and 2003 (after one, four and 10 years of its start, respectively). The majority of publications (93%) were full papers (articles), which were used as the experimental group while other types of contributions functioned as the control group. We also carried out a multiple regression analysis.Findings: TUBITAK's support program has had negligible effect on the increase of the number of papers with Turkish affiliations. Yet, the number of other types of contributions continued to increase even though they were not well supported, suggesting that TUBITAK's support program is probably not the main factor causing the increase in the number of papers with Turkish affiliations. Research limitations: Interrupted time series analysis shows if the "intervention" has had any significant effect on the dependent variable but it does not explain what caused the increase in the number of papers if it was not the intervention. Moreover, except the"intervention", other "event(s)" that might affect the time series data (e.g., increase in the number of research personnel over the years) should not occur during the period of analysis, a prerequisite that is beyond the control of the researcher. Practical implications: TUBITAK's "cash-for-publication" program did not seem to have direct impact on the increase of the number of papers published by Turkish authors, suggesting that small amounts of payments are not much of an incentive for authors to publish more. It might perhaps be a better strategy to concentrate limited resources on a few high impact projects rather than to disperse them to thousands of authors as "micropayments." Originality/value: Based on 25 years' worth of payments data, this is perhaps one of the first large-scale studies showing that "cash-for-publication" policies or "piece rates" paid to researchers tend to have little or no effect on the increase of researchers' productivity. The main finding of this paper has some implications for countries wherein publication subsidies are used as an incentive to increase the number and quality of papers published in international journals. They should be prepared to consider reviewing their existing support programs (based usually on bibliometric measures such as journal impact factors) and revising their reward policies.
文摘We present a hybrid singular spectrum analysis (SSA) and fuzzy entropy method to filter noisy nonlinear time series. With this approach, SSA decomposes the noisy time series into its constituent components including both the deterministic behavior and noise, while fuzzy entropy automatically differentiates the optimal dominant components from the noise based on the complexity of each component. We demonstrate the effectiveness of the hybrid approach in reconstructing the Lorenz and Mackey--Class attractors, as well as improving the multi-step prediction quality of these two series in noisy environments.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
文摘Unprecedented industrialization and urbanization have led to China’s poor energy efficiency. In response, the Chinese government has set goals to reduce energy consumption that may include implementing new tax policies. In this paper, we investigate the relationship between energy intensity, an indicator that measures the efficiency of energy consumption, and two sources of government revenue in China (i.e., value-added tax (VAT) and corporate income tax). As a case study, we developed a Granger co-integration model to analyze the dynamic relationship of energy intensity, VAT and corporate income tax in the non-ferrous metal industry, Jiangxi Province, China, between 1996 and 2010. Augmented Dickey-Fuller tests were used to validate the model. In our time series analyses, we found when controlling for corporate income tax, a one log unit increase of VAT resulted in a decrease of 1.17 log units of energy intensity. However, when controlling for VAT, a one log unit increase of corporate income tax resulted in an increase of 0.34 log units of energy intensity. Understanding the relationship between energy intensity and taxation in industries that consume high volumes of energy can greatly enhance China’s goal to reduce energy consumption. We believe our findings add to this on-going discussion.
基金Supported by the Key Scientific Research Project of Universities in Henan Province,No.21A330004Natural Science Foundation in Henan Province,No.222300420265.
文摘BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their spread is essential for developing effective strategies,heightening the requirement for early warning to deal with such a major public health threat.AIM To monitor HB and HC epidemics by the design of a paradigmatic seasonal autoregressive fractionally integrated moving average(SARFIMA)for projections into 2030,and to compare the effectiveness with the seasonal autoregressive integrated moving average(SARIMA).METHODS Monthly HB and HC incidence cases in China were obtained from January 2004 to June 2023.Descriptive analysis and the Hodrick-Prescott method were employed to identify trends and seasonality.Two periods(from January 2004 to June 2022 and from January 2004 to December 2015,respectively)were used as the training sets to develop both models,while the remaining periods served as the test sets to evaluate the forecasting accuracy.RESULTS There were incidents of 23400874 HB cases and 3590867 HC cases from January 2004 to June 2023.Overall,HB remained steady[average annual percentage change(AAPC)=0.44,95%confidence interval(95%CI):-0.94-1.84]while HC was increasing(AAPC=8.91,95%CI:6.98-10.88),and both had a peak in March and a trough in February.In the 12-step-ahead HB forecast,the mean absolute deviation(15211.94),root mean square error(18762.94),mean absolute percentage error(0.17),mean error rate(0.15),and root mean square percentage error(0.25)under the best SARFIMA(3,0,0)(0,0.449,2)12 were smaller than those under the best SARIMA(3,0,0)(0,1,2)12(16867.71,20775.12,0.19,0.17,and 0.27,respectively).Similar results were also observed for the 90-step-ahead HB,12-step-ahead HC,and 90-step-ahead HC forecasts.The predicted HB incidents totaled 9865400(95%CI:7508093-12222709)cases and HC totaled 1659485(95%CI:856681-2462290)cases during 2023-2030.CONCLUSION Under current interventions,China faces enormous challenges to eliminate HB and HC epidemics by 2030,and effective strategies must be reinforced.The integration of SARFIMA into public health for the management of HB and HC epidemics can potentially result in more informed and efficient interventions,surpassing the capabilities of SARIMA.
基金Project Supported by Cultiration Found of the Key Scientific and Technical Innovation Project,Ministry of Education of China(707018)
文摘To solve the problem of the flashover forecasting of contaminated or polluted insulator,a flashover forecasting model of contaminated insulators based on nonlinear time series analysis is proposed in the paper.The ESDD is the key of flashover on polluted insulator.The ESDD value of insulator can be forecasted by the method of nonlinear time series analysis of the ESDD time series and a forecasting model of polluted insulator flashover is proposed in the paper.The forecasting model consists of two artificial neural networks that reflect relationship of environment,ESDD and flashover probability.The first is used to estimate the ESDD time series of insulator and the second is employed to calculate the probability of the flashover.A series of artificial pollution tests show that the results of the forecasting model is acceptable.
文摘For many years planning and management of water resources involved modeling and simulation of temporally sequenced and stochastic hydrologic events. Rainfall process is one of such hydrologic events which calls for time series analysis to better understand interesting features contained in it. Many statistics-based methods are available to simulate and predict such a kind of time series. Autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models are among those methods. In this study a search was conducted to identify and examine a capable stochastic model for annual rainfall series (over the period 1954-2015) of Debre Markos town, Ethiopia. For the historical series, normality and stationarity tests were conducted to check if the time series was from a normally distributed and stationary process. Shapiro-Wilk (SW), Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) tests were among the normality tests conducted whereas, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were among the stationarity tests. Based on the test results, logarithmic transformation and first order differencing were performed to bring the original series to a normal and stationary series. Results of model fitting showed that three models namely, AR (2), MA (1) and ARMA (2,1) were capable in describing the annual rainfall series. A diagnostic check was performed on model residuals and ARMA (2,1) was found to be the best model among the candidates. Furthermore, three information criteria: Akaike Information Criterion (AIC), the corrected Akaike Information Criterion (AICc) and Bayesian Information Criterion (BIC) were used to select the best model. In this regard, too, the least information discrepancy between the underlying process and the fitted model was obtained from ARMA (2,1) model. Hence, this model was considered as a better representative of the annual rainfall values and was used to predict five years ahead values. The mean absolute percentage error (MAPE) of the prediction was found to be less than 10%. Thus, ARMA (2,1) model could be used for forecasting and simulation of annual rainfall for planning, management and design of water resources systems in Debre Markos town.