In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylam...In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices.展开更多
Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of n...Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears.This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding(CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV(bulk) to indirect 1.17 eV(2L) and four(two) complex, highly anisotropic and layer-dependent hole(electron) pockets in the first Brillouin zone.It also exhibits an extraordinarily high hole mobility(~10~5 cm^2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This ‘‘one-dimen sion-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.展开更多
基金the financial support from the National Natural Science Foundation of China (52002356)the China Postdoctoral Science Foundation (2020M672269)the National Key R&D program of China (2019YFA0706802)
文摘In this study,the hydrogel network was reinforced by covalent-like hydrogen bonding,and the strong binding ability of boron-nitrogen coordination served as the main driving force.Among them,acrylamide(AM)and 3-acrylamidophenylboronic acid(AAPBA)were the main body,and the numerous hydroxyl groups in the trehalose(Treh)molecule and other polymer groups formed strong hydrogen bonding interactions to improve the mechanical properties of the PAM/PAAPBA/Treh(PAAT)hydrogel and ensured the simplicity of the synthesis process.The hydrogel possessed high strain at break(1239%),stress(64.7 kPa),low hysteresis(100%to 500%strain,corresponding to dissipation energy from 1.37 to 7.80 kJ/m^(3)),and outstanding cycling stability(retained more than 90%of maximum stress after 200 ten-sile cycles).By integrating carbon nanotubes(CNTs)into PAAT hydrogel(PAATC),the PAATC hydrogel with excellent strain response performance was successfully constructed.The PAATC conductive hydro-gel exhibited high sensitivity(gauge factor(GF)=10.58 and sensitivity(S)=0.304 kPa^(-1)),wide strain response range(0.5%-1000%),fast response time(450 ms),and short recovery time(350 ms),excellent fatigue resistance,and strain response stability.Furthermore,the PAATC-based triboelectric nanogener-ator(TENG)displayed outstanding energy harvesting performance,which shows its potential for appli-cation in self-powered electronic devices.
基金supported by the National Natural Science Foundation of China(11274380,91433103,11622437,61674171,and 61761166009)the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China(16XNLQ01)+1 种基金The Hong Kong Polytechnic University(G-SB53)J.Q. and C.W. were supported by the Outstanding Innovative Talents Cultivation Funded Programs 2016 and 2017 of Renmin University of China,respectively
文摘Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus(BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears.This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding(CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV(bulk) to indirect 1.17 eV(2L) and four(two) complex, highly anisotropic and layer-dependent hole(electron) pockets in the first Brillouin zone.It also exhibits an extraordinarily high hole mobility(~10~5 cm^2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This ‘‘one-dimen sion-like" few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.