It is shown that an n × n matrix of continuous linear maps from a pro-C^*-algebra A to L(H), which verifies the condition of complete positivity, is of the form [V^*TijФ(·)V]^n i,where Ф is a represe...It is shown that an n × n matrix of continuous linear maps from a pro-C^*-algebra A to L(H), which verifies the condition of complete positivity, is of the form [V^*TijФ(·)V]^n i,where Ф is a representation of A on a Hilbert space K, V is a bounded linear operator from H to K, and j=1,[Tij]^n i,j=1 is a positive element in the C^*-algebra of all n×n matrices over the commutant of Ф(A) in L(K). This generalizes a result of C. Y.Suen in Proc. Amer. Math. Soc., 112(3), 1991, 709-712. Also, a covariant version of this construction is given.展开更多
基金Project supported by the grant CNCSIS (Romanian National Council for Research in High Education)-code A 1065/2006.
文摘It is shown that an n × n matrix of continuous linear maps from a pro-C^*-algebra A to L(H), which verifies the condition of complete positivity, is of the form [V^*TijФ(·)V]^n i,where Ф is a representation of A on a Hilbert space K, V is a bounded linear operator from H to K, and j=1,[Tij]^n i,j=1 is a positive element in the C^*-algebra of all n×n matrices over the commutant of Ф(A) in L(K). This generalizes a result of C. Y.Suen in Proc. Amer. Math. Soc., 112(3), 1991, 709-712. Also, a covariant version of this construction is given.