This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with...This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.展开更多
The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from ...The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.展开更多
It is well known that the use of Helmholtz decomposition theorem for static vector fields , when applied to the time dependent vector fields , which represent the electromagnetic field, allows us to obtain instan...It is well known that the use of Helmholtz decomposition theorem for static vector fields , when applied to the time dependent vector fields , which represent the electromagnetic field, allows us to obtain instantaneous-like solutions all along . For this reason, some people thought (see e.g. [1] and references therein) that the Helmholtz theorem cannot be applied to time dependent vector fields and some modification is wanted in order to get the retarded solutions. However, the use of the Helmholtz theorem for static vector fields is correct even for time dependent vector fields (see, e.g. [2]), so a relation between the solutions was required, in such a way that a retarded solution can be transformed in an instantaneous one, and conversely. On this paper we want to suggest, following most of the time the mathematical formalism of Woodside in [3], that: 1) there are many Helmholtz decompositions, all equally consistent, 2) each one is naturally related to a space-time structure, 3) when we use the Helmholtz decomposition for the electromagnetic potentials it is equivalent to a gauge transformation, 4) there is a natural methodological criterion for choosing the gauge according to the structure postulated for a global space-time, 5) the Helmholtz decomposition is the manifestation at the level of the fields that a gauge is involved. So, when we relate the retarded solution to the instantaneous one what we do is to change the gauge and the space-time. And, if the Helmholtz decompositions are related to a space-time structure, and are equivalent to gauge transformations, each gauge transformation is natural for a specific space-time. In this way, a Helmholtz decomposition for Euclidean space is equivalent to the Coulomb gauge and a Helmholtz decomposition for the Minkowski space is equivalent to the Lorenz gauge. This leads us to consider that the theories defined by different gauges may be mathematically equivalent, because they can be related by means of a gauge transformation, but they are not empirically equivalent, because they have quite different observational consequences due to the different space-time structure involved.展开更多
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.
文摘It is well known that the use of Helmholtz decomposition theorem for static vector fields , when applied to the time dependent vector fields , which represent the electromagnetic field, allows us to obtain instantaneous-like solutions all along . For this reason, some people thought (see e.g. [1] and references therein) that the Helmholtz theorem cannot be applied to time dependent vector fields and some modification is wanted in order to get the retarded solutions. However, the use of the Helmholtz theorem for static vector fields is correct even for time dependent vector fields (see, e.g. [2]), so a relation between the solutions was required, in such a way that a retarded solution can be transformed in an instantaneous one, and conversely. On this paper we want to suggest, following most of the time the mathematical formalism of Woodside in [3], that: 1) there are many Helmholtz decompositions, all equally consistent, 2) each one is naturally related to a space-time structure, 3) when we use the Helmholtz decomposition for the electromagnetic potentials it is equivalent to a gauge transformation, 4) there is a natural methodological criterion for choosing the gauge according to the structure postulated for a global space-time, 5) the Helmholtz decomposition is the manifestation at the level of the fields that a gauge is involved. So, when we relate the retarded solution to the instantaneous one what we do is to change the gauge and the space-time. And, if the Helmholtz decompositions are related to a space-time structure, and are equivalent to gauge transformations, each gauge transformation is natural for a specific space-time. In this way, a Helmholtz decomposition for Euclidean space is equivalent to the Coulomb gauge and a Helmholtz decomposition for the Minkowski space is equivalent to the Lorenz gauge. This leads us to consider that the theories defined by different gauges may be mathematically equivalent, because they can be related by means of a gauge transformation, but they are not empirically equivalent, because they have quite different observational consequences due to the different space-time structure involved.