Let R be a ring. We define a dimension, called P-cotorsion dimension, for modules and rings. The aim of this article is to investigate P-cotorsion dimensions of modules and rings and the relations between P-cotorsion ...Let R be a ring. We define a dimension, called P-cotorsion dimension, for modules and rings. The aim of this article is to investigate P-cotorsion dimensions of modules and rings and the relations between P-cotorsion dimension and other homological dimensions. This dimension has nice properties when the ring in consideration is generalized morphic.展开更多
In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. W...In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.展开更多
The concepts of covering dimension,small inductive dimension and large inductive dimension for topological spaces are extended to L-topological spaces using the quasi-coincidence relation.Besides getting some characte...The concepts of covering dimension,small inductive dimension and large inductive dimension for topological spaces are extended to L-topological spaces using the quasi-coincidence relation.Besides getting some characterizations,it is also seen that all these characterizations are good in the sense of Lowen.展开更多
基金supported by Collegial Natural Science Research Program of Education Department of Jiangsu Province (07KJD110043)
文摘Let R be a ring. We define a dimension, called P-cotorsion dimension, for modules and rings. The aim of this article is to investigate P-cotorsion dimensions of modules and rings and the relations between P-cotorsion dimension and other homological dimensions. This dimension has nice properties when the ring in consideration is generalized morphic.
基金supported by National Natural Science Foundation of China(10961021,11001222)
文摘In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.
文摘The concepts of covering dimension,small inductive dimension and large inductive dimension for topological spaces are extended to L-topological spaces using the quasi-coincidence relation.Besides getting some characterizations,it is also seen that all these characterizations are good in the sense of Lowen.