We calculate the exclusive charmonium photo-production in the framework of color glass condensate.To obtain a good description of the vector meson production experimental data at HERA,we introduce a vector meson mass ...We calculate the exclusive charmonium photo-production in the framework of color glass condensate.To obtain a good description of the vector meson production experimental data at HERA,we introduce a vector meson mass dependent skewness factor into the skewness effect.Then we extend the skewness improved model to the LHC energies.The numerical results of our model are in good agreement with theΨ/Ψ and Ψ(2S)data in ultraperipheral proton-proton collisions at LHC,which show the significance of the vector meson mass-dependent skewness factor.A prediction of the exclusive charmonium photo-production in ultra-peripheral nucleus-nucleus collisions is performed since it can provide a good way to test the effectiveness of the color glass condensate.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11765005,11305040,IRG11521064,11775097 and 11465021the Fund of Science and Technology Department of Guizhou Province under Grant No[2015]2114the Education Department of Guizhou Province under Grant No.KY[2017]004
文摘We calculate the exclusive charmonium photo-production in the framework of color glass condensate.To obtain a good description of the vector meson production experimental data at HERA,we introduce a vector meson mass dependent skewness factor into the skewness effect.Then we extend the skewness improved model to the LHC energies.The numerical results of our model are in good agreement with theΨ/Ψ and Ψ(2S)data in ultraperipheral proton-proton collisions at LHC,which show the significance of the vector meson mass-dependent skewness factor.A prediction of the exclusive charmonium photo-production in ultra-peripheral nucleus-nucleus collisions is performed since it can provide a good way to test the effectiveness of the color glass condensate.