In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter re...In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter referred to as FHCOA)based on chaotic initialization and reverse learning strategy is proposed,and its effect on image thresholding is verified.Through chaotic initialization,the random number initialization mode in the standard coyote optimization algorithm(COA)is replaced by chaotic sequence.Such sequence is nonlinear and long-term unpredictable,these characteristics can effectively improve the diversity of the population in the optimization algorithm.Therefore,in this paper we first perform chaotic initialization,using chaotic sequence to replace random number initialization in standard COA.By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy,a hybrid reverse learning strategy is then formed.In the process of algorithm traversal,the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively,which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence.Based on the above improvements,the coyote optimization algorithm has better global convergence and computational robustness.The simulation results show that the algorithmhas better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set.展开更多
Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achi...Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders.Intrusion Detection System(IDS)refers to one of the commonly utilized system for detecting attacks on cloud.IDS proves to be an effective and promising technique,that identifies malicious activities and known threats by observing traffic data in computers,and warnings are given when such threatswere identified.The current mainstream IDS are assisted with machine learning(ML)but have issues of low detection rates and demanded wide feature engineering.This article devises an Enhanced Coyote Optimization with Deep Learning based Intrusion Detection System for Cloud Security(ECODL-IDSCS)model.The ECODL-IDSCS model initially addresses the class imbalance data problem by the use of Adaptive Synthetic(ADASYN)technique.For detecting and classification of intrusions,long short term memory(LSTM)model is exploited.In addition,ECO algorithm is derived to optimally fine tune the hyperparameters related to the LSTM model to enhance its detection efficiency in the cloud environment.Once the presented ECODL-IDSCS model is tested on benchmark dataset,the experimental results show the promising performance of the ECODL-IDSCS model over the existing IDS models.展开更多
Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones,computers,or tablets.It can occur through various channels,such as social media,text messages,onlin...Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones,computers,or tablets.It can occur through various channels,such as social media,text messages,online forums,or gaming platforms.Cyberbullying involves using technology to intentionally harm,harass,or intimidate others and may take different forms,including exclusion,doxing,impersonation,harassment,and cyberstalking.Unfortunately,due to the rapid growth of malicious internet users,this social phenomenon is becoming more frequent,and there is a huge need to address this issue.Therefore,the main goal of the research proposed in this manuscript is to tackle this emerging challenge.A dataset of sexist harassment on Twitter,containing tweets about the harassment of people on a sexual basis,for natural language processing(NLP),is used for this purpose.Two algorithms are used to transform the text into a meaningful representation of numbers for machine learning(ML)input:Term frequency inverse document frequency(TF-IDF)and Bidirectional encoder representations from transformers(BERT).The well-known eXtreme gradient boosting(XGBoost)ML model is employed to classify whether certain tweets fall into the category of sexual-based harassment or not.Additionally,with the goal of reaching better performance,several XGBoost models were devised conducting hyperparameter tuning by metaheuristics.For this purpose,the recently emerging Coyote optimization algorithm(COA)was modified and adjusted to optimize the XGBoost model.Additionally,other cutting-edge metaheuristics approach for this challenge were also implemented,and rigid comparative analysis of the captured classification metrics(accuracy,Cohen kappa score,precision,recall,and F1-score)was performed.Finally,the best-generated model was interpreted by Shapley additive explanations(SHAP),and useful insights were gained about the behavioral patterns of people who perform social harassment.展开更多
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61572261 and 61876089)+3 种基金the Natural Science Foundation of Anhui(1908085MF207,KJ2020A1215,KJ2021A1251 and KJ2021A1253)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097 and gxyqZD2021142)the Postdoctoral Foundation of Jiangsu(2018K009B)the Foundation of Fuyang Normal University(TDJC2021008).
文摘In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter referred to as FHCOA)based on chaotic initialization and reverse learning strategy is proposed,and its effect on image thresholding is verified.Through chaotic initialization,the random number initialization mode in the standard coyote optimization algorithm(COA)is replaced by chaotic sequence.Such sequence is nonlinear and long-term unpredictable,these characteristics can effectively improve the diversity of the population in the optimization algorithm.Therefore,in this paper we first perform chaotic initialization,using chaotic sequence to replace random number initialization in standard COA.By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy,a hybrid reverse learning strategy is then formed.In the process of algorithm traversal,the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively,which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence.Based on the above improvements,the coyote optimization algorithm has better global convergence and computational robustness.The simulation results show that the algorithmhas better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project,under grant no.KEP-1-120-42.
文摘Cloud Computing(CC)is the preference of all information technology(IT)organizations as it offers pay-per-use based and flexible services to its users.But the privacy and security become the main hindrances in its achievement due to distributed and open architecture that is prone to intruders.Intrusion Detection System(IDS)refers to one of the commonly utilized system for detecting attacks on cloud.IDS proves to be an effective and promising technique,that identifies malicious activities and known threats by observing traffic data in computers,and warnings are given when such threatswere identified.The current mainstream IDS are assisted with machine learning(ML)but have issues of low detection rates and demanded wide feature engineering.This article devises an Enhanced Coyote Optimization with Deep Learning based Intrusion Detection System for Cloud Security(ECODL-IDSCS)model.The ECODL-IDSCS model initially addresses the class imbalance data problem by the use of Adaptive Synthetic(ADASYN)technique.For detecting and classification of intrusions,long short term memory(LSTM)model is exploited.In addition,ECO algorithm is derived to optimally fine tune the hyperparameters related to the LSTM model to enhance its detection efficiency in the cloud environment.Once the presented ECODL-IDSCS model is tested on benchmark dataset,the experimental results show the promising performance of the ECODL-IDSCS model over the existing IDS models.
基金supported by the Science Fund of the Republic of Serbia,Grant No.7373Characterizing Crises-Caused Air Pollution Alternations Using an Artificial Intelligence-Based Framework-crAIRsis and Grant No.7502Intelligent Multi-Agent Control and Optimization applied to Green Buildings and Environmental Monitoring Drone Swarms-ECOSwarm.
文摘Cyberbullying is a form of harassment or bullying that takes place online or through digital devices like smartphones,computers,or tablets.It can occur through various channels,such as social media,text messages,online forums,or gaming platforms.Cyberbullying involves using technology to intentionally harm,harass,or intimidate others and may take different forms,including exclusion,doxing,impersonation,harassment,and cyberstalking.Unfortunately,due to the rapid growth of malicious internet users,this social phenomenon is becoming more frequent,and there is a huge need to address this issue.Therefore,the main goal of the research proposed in this manuscript is to tackle this emerging challenge.A dataset of sexist harassment on Twitter,containing tweets about the harassment of people on a sexual basis,for natural language processing(NLP),is used for this purpose.Two algorithms are used to transform the text into a meaningful representation of numbers for machine learning(ML)input:Term frequency inverse document frequency(TF-IDF)and Bidirectional encoder representations from transformers(BERT).The well-known eXtreme gradient boosting(XGBoost)ML model is employed to classify whether certain tweets fall into the category of sexual-based harassment or not.Additionally,with the goal of reaching better performance,several XGBoost models were devised conducting hyperparameter tuning by metaheuristics.For this purpose,the recently emerging Coyote optimization algorithm(COA)was modified and adjusted to optimize the XGBoost model.Additionally,other cutting-edge metaheuristics approach for this challenge were also implemented,and rigid comparative analysis of the captured classification metrics(accuracy,Cohen kappa score,precision,recall,and F1-score)was performed.Finally,the best-generated model was interpreted by Shapley additive explanations(SHAP),and useful insights were gained about the behavioral patterns of people who perform social harassment.