Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The softwa...Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The software Solidworks and MSC. ADAMS are adopted to simulate and analyze the prototype model of the robot. By the simulations used in our design, the applicability of the tripod gait is validated, and the scheme which uses cubic spline curve as the endpoint of foot's path is feasible. The principles, methods, and processes of the simulation of hexapod robot are illustrated. A methodology is proposed to get the robot inverse solution in ADAMS, and to simplify the theoretical calculation, and further more to improve the efficiency of the design.展开更多
In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vert...In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vertical take-off and hover flight.We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance.The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery.Considering the inherent instability of the prototype,we discuss the derivatives of its longitudinal system,underscoring the importance of feedback control,position of the centre of gravity,and increased damping.To demonstrate the effect of damping enhancement on stability,we also designed a passive stable FW-MAV.Currently,the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control,whereas yaw is passively stabilised.Through a series of flight tests,we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions.These promising results position the Explobird as a robust vehicle with high lift capability,paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks.展开更多
As the domains, in which robots operate change the objects a robot may be required to grasp and manipulate, are likely to vary sig- nificantly and often. Furthermore there is increasing likelihood that in the future r...As the domains, in which robots operate change the objects a robot may be required to grasp and manipulate, are likely to vary sig- nificantly and often. Furthermore there is increasing likelihood that in the future robots will work collaboratively alongside people. There has therefore been interest in the development of biologically inspired robot designs which take inspiration from nature. This paper pre- sents the design and testing of a variable stiffness, three fingered soft gripper, which uses pneumatic muscles to actuate the fingers and granular jamming to vary their stiffness. This gripper is able to adjust its stiffness depending upon how fragile/deformable the object being grasped is. It is also lightweight and low inertia, making it better suited to operation near people. Each finger is formed from a cylindrical rubber bladder filled with a granular material. It is shown how decreasing the pressure inside the finger increases the jamming effect and raises finger stiffness. The paper shows experimentally how the finger stiffness can be increased from 21 N·m^-1 to 71 N·m^-1. The paper also describes the kinematics of the fingers and demonstrates how they can be position-controlled at a range of different stiffness values.展开更多
We describe our research in using environmental visual landmarks as the basis for completing simple robot construction tasks.Inspired by honeybee visual navigation behavior,a visual template mechanism is proposed in w...We describe our research in using environmental visual landmarks as the basis for completing simple robot construction tasks.Inspired by honeybee visual navigation behavior,a visual template mechanism is proposed in which a natural landmark serves as a visual reference or template for distance determination as well as for navigation during collective construction.To validate our proposed mechanism,a wall construction problem is investigated and a minimalist solution is given.Experimental results show that,using the mechanism of a visual template,a collective robotic system can successfully build the desired structure in a decentralized fashion using only local sensing and no direct communication.In addition,a particular variable,which defines tolerance for alignment of the structure,is found to impact the system performance.By decreasing the value of the variable,system performance is improved at the expense of a longer construction time.The visual template mechanism is appealing in that it can use a reference point or salient object in a natural environment that is new or unexplored and it could be adapted to facilitate more complicated building tasks.展开更多
This paper presents a wheeled wall-climbing robot with the ability to climb concrete, brick walls using circular arrays of miniature spines located around the wheel. The robot consists of two driving wheels and a flex...This paper presents a wheeled wall-climbing robot with the ability to climb concrete, brick walls using circular arrays of miniature spines located around the wheel. The robot consists of two driving wheels and a flexible tail, just like letter “T”, so it is called Tbot. The simple and effective structure of Tbot enables it to be steerable and to transition from horizontal to vertical surfaces rapidly and stably. Inspired by the structure and mechanics of the tarsal chain in the Serica orientalis Motschulsky, a compliant spine mechanism was developed. With the bio-inspired compliant spine mechanism, the climbing performance of Tbot was improved. It could climb on 100° (10° past vertical) brick walls at a speed of 10 cm·s^-1. A mechanical model is also presented to analyze the forces acting on spine during a climbing cycle as well as load share between multi-spines. The simu- lation and experiment results show that the mechanical model is suitable and useful in the optimum design of Tbot.展开更多
The realization of a high-speed running robot is one of the most challenging problems in developing legged robots. The excellent performance of cheetahs provides inspiration for the control and mechanical design of su...The realization of a high-speed running robot is one of the most challenging problems in developing legged robots. The excellent performance of cheetahs provides inspiration for the control and mechanical design of such robots. This paper presents a three-dimensional model of a cheetah that predicts the locomotory behaviors of a running cheetah. Applying biological knowledge of the neural mechanism, we control the muscle flexion and extension during the stance phase, and control the positions of the joints in the flight phase via a PD controller to minimize complexity. The proposed control strategy is shown to achieve similar locomotion of a real cheetah. The simulation realizes good biological properties, such as the leg retraction, ground reaction force, and spring-like leg behavior. The stable bounding results show the promise of the controller in high-speed locomotion. The model can reach 2.7 m-s^-1 as the highest speed, and can accelerate from 0 to 1.5 m-s^-1 in one stride cycle. A mechanical structure based on this simulation is designed to demonstrate the control approach, and the most recently developed hindlimb controlled by the proposed controller is presented in swinging-leg experiments and jump-force experiments.展开更多
This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude ...This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation(6140528)
文摘Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The software Solidworks and MSC. ADAMS are adopted to simulate and analyze the prototype model of the robot. By the simulations used in our design, the applicability of the tripod gait is validated, and the scheme which uses cubic spline curve as the endpoint of foot's path is feasible. The principles, methods, and processes of the simulation of hexapod robot are illustrated. A methodology is proposed to get the robot inverse solution in ADAMS, and to simplify the theoretical calculation, and further more to improve the efficiency of the design.
基金supported by the National Natural Science Foundation of China under Grant No.51975023&52322501supported in part by the National Natural Science Foundation of China under Grant No.U22B2040.
文摘In this paper,we present the development of our latest flapping-wing micro air vehicle(FW-MAV),named Explobird,which features two wings with a wingspan of 195 mm and weighs a mere 25.2 g,enabling it to accomplish vertical take-off and hover flight.We devised a novel gear-based mechanism for the flapping system to achieve high lift capability and reliability and conducted extensive testing and analysis on the wings to optimise power matching and lift performance.The Explobird can deliver a peak lift-to-weight ratio of 1.472 and an endurance time of 259 s during hover flight powered by a single-cell LiPo battery.Considering the inherent instability of the prototype,we discuss the derivatives of its longitudinal system,underscoring the importance of feedback control,position of the centre of gravity,and increased damping.To demonstrate the effect of damping enhancement on stability,we also designed a passive stable FW-MAV.Currently,the vehicle is actively stabilised in roll by adjusting the wing root bars and in pitch through high-authority tail control,whereas yaw is passively stabilised.Through a series of flight tests,we successfully demonstrate that our prototype can perform vertical take-off and hover flight under wireless conditions.These promising results position the Explobird as a robust vehicle with high lift capability,paving the way towards the use of FW-MAVs for carrying load equipment in multiple tasks.
文摘As the domains, in which robots operate change the objects a robot may be required to grasp and manipulate, are likely to vary sig- nificantly and often. Furthermore there is increasing likelihood that in the future robots will work collaboratively alongside people. There has therefore been interest in the development of biologically inspired robot designs which take inspiration from nature. This paper pre- sents the design and testing of a variable stiffness, three fingered soft gripper, which uses pneumatic muscles to actuate the fingers and granular jamming to vary their stiffness. This gripper is able to adjust its stiffness depending upon how fragile/deformable the object being grasped is. It is also lightweight and low inertia, making it better suited to operation near people. Each finger is formed from a cylindrical rubber bladder filled with a granular material. It is shown how decreasing the pressure inside the finger increases the jamming effect and raises finger stiffness. The paper shows experimentally how the finger stiffness can be increased from 21 N·m^-1 to 71 N·m^-1. The paper also describes the kinematics of the fingers and demonstrates how they can be position-controlled at a range of different stiffness values.
基金Project (No.61075091) supported by the National Natural Science Foundation of China
文摘We describe our research in using environmental visual landmarks as the basis for completing simple robot construction tasks.Inspired by honeybee visual navigation behavior,a visual template mechanism is proposed in which a natural landmark serves as a visual reference or template for distance determination as well as for navigation during collective construction.To validate our proposed mechanism,a wall construction problem is investigated and a minimalist solution is given.Experimental results show that,using the mechanism of a visual template,a collective robotic system can successfully build the desired structure in a decentralized fashion using only local sensing and no direct communication.In addition,a particular variable,which defines tolerance for alignment of the structure,is found to impact the system performance.By decreasing the value of the variable,system performance is improved at the expense of a longer construction time.The visual template mechanism is appealing in that it can use a reference point or salient object in a natural environment that is new or unexplored and it could be adapted to facilitate more complicated building tasks.
基金Acknowledgment This work was supported by National Basic Re- search Program of China (No.2011 CB302106), National Natural Science Foundation of China (No. 51005223) and Changzhou Science and Technology Support Pro- gram (CE20120081). The authors would like to thank Dr Xiaojie Wang for his valuable advice and kind help in preparing this manuscript.
文摘This paper presents a wheeled wall-climbing robot with the ability to climb concrete, brick walls using circular arrays of miniature spines located around the wheel. The robot consists of two driving wheels and a flexible tail, just like letter “T”, so it is called Tbot. The simple and effective structure of Tbot enables it to be steerable and to transition from horizontal to vertical surfaces rapidly and stably. Inspired by the structure and mechanics of the tarsal chain in the Serica orientalis Motschulsky, a compliant spine mechanism was developed. With the bio-inspired compliant spine mechanism, the climbing performance of Tbot was improved. It could climb on 100° (10° past vertical) brick walls at a speed of 10 cm·s^-1. A mechanical model is also presented to analyze the forces acting on spine during a climbing cycle as well as load share between multi-spines. The simu- lation and experiment results show that the mechanical model is suitable and useful in the optimum design of Tbot.
基金Acknowledgments This work is supported by the National Hi-tech Research and Development Program of China (863 Program, Grant no. 2011AA0403837002), the National Natural Science Foundation of China (No. 61005076, No. 61175107), and the Self-Planned Task (No. SKLRS201006B) of the State Key Laboratory of Ro- botics and System (HIT).
文摘The realization of a high-speed running robot is one of the most challenging problems in developing legged robots. The excellent performance of cheetahs provides inspiration for the control and mechanical design of such robots. This paper presents a three-dimensional model of a cheetah that predicts the locomotory behaviors of a running cheetah. Applying biological knowledge of the neural mechanism, we control the muscle flexion and extension during the stance phase, and control the positions of the joints in the flight phase via a PD controller to minimize complexity. The proposed control strategy is shown to achieve similar locomotion of a real cheetah. The simulation realizes good biological properties, such as the leg retraction, ground reaction force, and spring-like leg behavior. The stable bounding results show the promise of the controller in high-speed locomotion. The model can reach 2.7 m-s^-1 as the highest speed, and can accelerate from 0 to 1.5 m-s^-1 in one stride cycle. A mechanical structure based on this simulation is designed to demonstrate the control approach, and the most recently developed hindlimb controlled by the proposed controller is presented in swinging-leg experiments and jump-force experiments.
基金co-supported by the National Science Fund for Distinguished Young Scholars,China(No.52025054)the National Natural Science Foundation of China(No.61961015).
文摘This paper presents that a serpentine curve-based controller can solve locomotion control problems for articulated space robots with extensive flight phases,such as obstacle avoidance during free floating or attitude adjustment before landing.The proposed algorithm achieves articulated robots to use closed paths in the joint space to accomplish the above tasks.Flying snakes,which can shuttle through gaps and adjust their landing posture by swinging their body during gliding in jungle environments,inspired the design of two maneuvers.The first maneuver generates a rotation of the system by varying the moment of inertia between the joints of the robot,with the magnitude of the net rotation depending on the controller parameters.This maneuver can be repeated to allow the robot to reach arbitrary reorientation.The second maneuver involves periodic undulations,allowing the robot to avoid collisions when the trajectory of the global Center of Mass(CM)passes through the obstacle.Both maneuvers are based on the improved serpenoid curve,which can adapt to redundant systems consisting of different numbers of modules.Finally,the simulation illustrates that combining the two maneuvers can help a free-floating chain-type robot traverse complex environments.Our proposed algorithm can be used with similar articulated robot models.