Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional iso...Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.展开更多
In order to utilize petroleum resources efficiently and greenly,and solve the problems of high coke yield,highsulfur coke utilization,and environmental protection concerns in China’s refineries,a resid contact cracki...In order to utilize petroleum resources efficiently and greenly,and solve the problems of high coke yield,highsulfur coke utilization,and environmental protection concerns in China’s refineries,a resid contact cracking and coke gasification integrated technology is being developed by the Research Institute of Petroleum Processing(RIPP).Based on the three technical characteristics including thin films cracking,partial oxidation,and rapid cracking,this technology not only can reduce the production rate of coke and dry gas formed during the process,but also can increase the liquid yield.Moreover,the in-situ low-temperature gasification technology is used to solve the clean utilization of high-sulfur petroleum coke,which can play the role of“Utility Island”and is a green and low-carbon technology for low-quality heavy oil upgrading.展开更多
In order to optimize the current grinding procedure of the backup roll of 2050 continuously variable crown (CVC) mills, the behavior of rolling contact fatigue (RCF) cracking was investigated. Two RCF short cracks, in...In order to optimize the current grinding procedure of the backup roll of 2050 continuously variable crown (CVC) mills, the behavior of rolling contact fatigue (RCF) cracking was investigated. Two RCF short cracks, including vertical short crack and ratcheting short crack initiated from ratcheting, were observed. The behavior of both RCF cracks was analyzed in detail. Then a modified grinding procedure was proposed according to the behavior of RCF cracks and the preventive grinding strategy.展开更多
As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physic...As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint展开更多
Using the basic solutions of a single crack and a single inclusion, and making use of the principle of linear superposition of elastic mechanics, the interaction problem between a planar crack and a flat inclusion in ...Using the basic solutions of a single crack and a single inclusion, and making use of the principle of linear superposition of elastic mechanics, the interaction problem between a planar crack and a flat inclusion in an elastic solid is studied. The problem is reduced to solve a set of standard Cauchy-type singular equations. And the stress intensity factors at points of crack and inclusion were obtained. Besides, the singularity for the horizontal contact of crack and inclusion was analyzed. The calculating model put forward can be regarded as a new technique for studying the crack and its expanding caused by inclusion lip. Then several numerical examples are given.展开更多
Taking the short-fiber composite materials as engineering back-ground, utilizing the existing basic solutions of single inclusion and single crack, the plane problem of vertical contact interactions between line crack...Taking the short-fiber composite materials as engineering back-ground, utilizing the existing basic solutions of single inclusion and single crack, the plane problem of vertical contact interactions between line crack and rigid line inclusion in infinite plane (matrix) from the viewpoint of crack fracture mechanics is studied. According to boundary conditions, a set of standard Cauchy-type singular integral equations of the problem is obtainable. Besides, singular indexes, stresses and stress intensity factors around the contact point are expressed. Numerical examples are given to provide references to engineering.展开更多
Based on the sequent tracking observation on spalling of steel GCr15 under rolling contact fa- tigue,an expression for estimating the propagation of subsurface cracks was derived.The rol- ling contact fatigue life was...Based on the sequent tracking observation on spalling of steel GCr15 under rolling contact fa- tigue,an expression for estimating the propagation of subsurface cracks was derived.The rol- ling contact fatigue life was found to be markedly related to the subsurface crack propagation angle.A new explanation of reason why the rolling contact fatigue life can be prolonged by residual compressive stress and retained austenite was advanced.展开更多
A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to c...A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.展开更多
The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit...The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant.展开更多
Nonlinear dynamic response represents the most important studies for structures subjected to a dynamic mo-tion so that it provides the researcher by an excellent information especially at critical design levels. The u...Nonlinear dynamic response represents the most important studies for structures subjected to a dynamic mo-tion so that it provides the researcher by an excellent information especially at critical design levels. The un-predictable nonlinearity in the structure appears when damage is inherited. Most times, the failure of the structure is related to the dynamic nonlinearity. With regard to the breathing phenomena for nonlinear struc-tural systems, very little is known about how the nonlinearities influence the response and the dynamic char-acteristics of cracked structures. In this research, dynamic nonlinearity is presented in damaged structure due to presence of a crack. The crack is assumed to be open and close simultaneously and then breathing. Effect of breathing phenomenon was studied deeply. Crack breathing is simulated at the crack surfaces using con-tact elements. The contact, geometrical, penalty, and spin stiffnesses are taken in consideration. In addition, effect of several important parameters such as rotor angular velocity and crack ratio are studied. The study showed that the breathing natural frequency of any structure is ranged between opened (no contact) and closed crack natural frequencies. The larger crack length, the more nonlinear disturbance in the dynamic re-sponse behavior. Also, at a critical crack length, some mode shapes tend to exchange and pass over with other modes. The presence of the mode interchanging and mode crossover was a guide on the nonlinear re-sponse for the cracked structure. The numerical modeling is achieved using ANSYS finite element program. Experimental data are used for validating the accurate use of contact elements in ANSYS environment.展开更多
Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel st...Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel steel. The results showed that although the roughness of the original specimen induced by mechanical processing would diminish to some extent in the experiment, the 0.5 - 1.5 μm thick layer of ultrafine microstructure on the original mechanically-processed specimen surface would still become micro-cracks and small spalling pits due to spalling, and would further evolve into fatigue crack source. Additionally, even under the impact of the load that was not adequate to make the material reach fatigue limit, the ferrite in the microstructure underwent plastic deformation, which led the refinement of proeutectoid ferrite grains. During the experiment, the hardening and the refinement caused by plastic deformation consisted with the theory that dislocation gave rise to plastic deformation and grain refinement. The distribution laws of hardness and ferrite grain sizes measured could be explained by the distribution law of the shearing stress in the subsurface.展开更多
基金supported by the National Natural Science Foundation of China(Grant 11321202)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant 20130101110120)
文摘Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.
基金This work was financially supported by the SINOPEC Research Program(No.115015 and 117017-1).
文摘In order to utilize petroleum resources efficiently and greenly,and solve the problems of high coke yield,highsulfur coke utilization,and environmental protection concerns in China’s refineries,a resid contact cracking and coke gasification integrated technology is being developed by the Research Institute of Petroleum Processing(RIPP).Based on the three technical characteristics including thin films cracking,partial oxidation,and rapid cracking,this technology not only can reduce the production rate of coke and dry gas formed during the process,but also can increase the liquid yield.Moreover,the in-situ low-temperature gasification technology is used to solve the clean utilization of high-sulfur petroleum coke,which can play the role of“Utility Island”and is a green and low-carbon technology for low-quality heavy oil upgrading.
文摘In order to optimize the current grinding procedure of the backup roll of 2050 continuously variable crown (CVC) mills, the behavior of rolling contact fatigue (RCF) cracking was investigated. Two RCF short cracks, including vertical short crack and ratcheting short crack initiated from ratcheting, were observed. The behavior of both RCF cracks was analyzed in detail. Then a modified grinding procedure was proposed according to the behavior of RCF cracks and the preventive grinding strategy.
文摘As suggested by the title, this extensive book is concerned with crack and contact prob- lems in linear elasticity. However, in general, it is intended for a wide audience ranging from engineers to mathematical physicists. Indeed, numerous problems of both academic and tech- nological interest in electro-magnetics, acoustics, solid and fluid dynamics, etc. are actually related to each other and governed by the same mixed boundary value problems from a unified mathematical standpoint
文摘Using the basic solutions of a single crack and a single inclusion, and making use of the principle of linear superposition of elastic mechanics, the interaction problem between a planar crack and a flat inclusion in an elastic solid is studied. The problem is reduced to solve a set of standard Cauchy-type singular equations. And the stress intensity factors at points of crack and inclusion were obtained. Besides, the singularity for the horizontal contact of crack and inclusion was analyzed. The calculating model put forward can be regarded as a new technique for studying the crack and its expanding caused by inclusion lip. Then several numerical examples are given.
文摘Taking the short-fiber composite materials as engineering back-ground, utilizing the existing basic solutions of single inclusion and single crack, the plane problem of vertical contact interactions between line crack and rigid line inclusion in infinite plane (matrix) from the viewpoint of crack fracture mechanics is studied. According to boundary conditions, a set of standard Cauchy-type singular integral equations of the problem is obtainable. Besides, singular indexes, stresses and stress intensity factors around the contact point are expressed. Numerical examples are given to provide references to engineering.
文摘Based on the sequent tracking observation on spalling of steel GCr15 under rolling contact fa- tigue,an expression for estimating the propagation of subsurface cracks was derived.The rol- ling contact fatigue life was found to be markedly related to the subsurface crack propagation angle.A new explanation of reason why the rolling contact fatigue life can be prolonged by residual compressive stress and retained austenite was advanced.
基金supported by the National Basic Research Program of China(Grant No.2012CB026200)the National Natural Science Foundation of China(Grant No.50878048)
文摘A new node-pairs contact algorithm is proposed to deal with a composite material or bi-material interface crack face contact and friction problem (e.g., resistant coating and thermal barrier coatings) subjected to complicated load conditions. To decrease the calculation scale and calculation errors, the local Lagrange multipliers are solved only on a pair of contact nodes using the Jacobi iteration method, and the constraint modification of the tangential multipliers are required. After the calculation of the present node-pairs Lagrange multiplier, it is turned to next contact node-pairs until all node-pairs have finished. Compared with an ordinary contact algorithm, the new local node-pairs contact algorithm is allowed a more precise element on the contact face without the stiffness matrix singularity. The stress intensity factors (SIFs) and the contact region of an infinite plate central crack are calculated and show good agreement with those in the literature. The contact zone near the crack tip as well as its influence on singularity of stress fields are studied. Furthermore, the frictional contacts are also considered and found to have a significant influence on the SIFs. The normalized mode-II stress intensity factors KII for the friction coefficient decrease by 16% when f changes from 1 to 0.
基金National Natural Science Foundation of China (10272036)
文摘The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant.
基金Project(11972112)supported by the National Natural Science Foundation of ChinaProject(N2103024)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Nonlinear dynamic response represents the most important studies for structures subjected to a dynamic mo-tion so that it provides the researcher by an excellent information especially at critical design levels. The un-predictable nonlinearity in the structure appears when damage is inherited. Most times, the failure of the structure is related to the dynamic nonlinearity. With regard to the breathing phenomena for nonlinear struc-tural systems, very little is known about how the nonlinearities influence the response and the dynamic char-acteristics of cracked structures. In this research, dynamic nonlinearity is presented in damaged structure due to presence of a crack. The crack is assumed to be open and close simultaneously and then breathing. Effect of breathing phenomenon was studied deeply. Crack breathing is simulated at the crack surfaces using con-tact elements. The contact, geometrical, penalty, and spin stiffnesses are taken in consideration. In addition, effect of several important parameters such as rotor angular velocity and crack ratio are studied. The study showed that the breathing natural frequency of any structure is ranged between opened (no contact) and closed crack natural frequencies. The larger crack length, the more nonlinear disturbance in the dynamic re-sponse behavior. Also, at a critical crack length, some mode shapes tend to exchange and pass over with other modes. The presence of the mode interchanging and mode crossover was a guide on the nonlinear re-sponse for the cracked structure. The numerical modeling is achieved using ANSYS finite element program. Experimental data are used for validating the accurate use of contact elements in ANSYS environment.
文摘Through the rolling contact fatigue experiment under the condition of the lubricating oil, this article investigated the relation between contact fatigue property and microstructure on the surface layer of D2 wheel steel. The results showed that although the roughness of the original specimen induced by mechanical processing would diminish to some extent in the experiment, the 0.5 - 1.5 μm thick layer of ultrafine microstructure on the original mechanically-processed specimen surface would still become micro-cracks and small spalling pits due to spalling, and would further evolve into fatigue crack source. Additionally, even under the impact of the load that was not adequate to make the material reach fatigue limit, the ferrite in the microstructure underwent plastic deformation, which led the refinement of proeutectoid ferrite grains. During the experiment, the hardening and the refinement caused by plastic deformation consisted with the theory that dislocation gave rise to plastic deformation and grain refinement. The distribution laws of hardness and ferrite grain sizes measured could be explained by the distribution law of the shearing stress in the subsurface.