By modeling metal as a special piezoelectric material with extremely small piezoelectricity and extremely large permittivity, we have obtained the analytical solutions for an interracial permeable crack in metal/piezo...By modeling metal as a special piezoelectric material with extremely small piezoelectricity and extremely large permittivity, we have obtained the analytical solutions for an interracial permeable crack in metal/piezoelectric bimaterials by means of the generalized Stroh formalism. The analysis shows that the stress fields near a permeable interracial crack tip are usually with three types of singularities: r^-1/2±iε and r^-1/2. Further numerical calculation on the oscillatory index ε are given for 28 types of metal/piezoelectric bimaterials combined by seven commercial piezoelectric materials: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7 and PZT-PIC 151 and four metals: copper, silver, lead and aluminum, respectively. The explicit expressions of the crack tip energy release rate (ERR) and the crack tip generalized stress intensity factors (GSIF) are obtained. It is found that both the ERR and GSIF are independent of the electric displacement loading, although they seriously depends on the mechanical loadings.展开更多
It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element m...It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.展开更多
A magnetoelectrically permeable interface crack between two semi-infinite magnetoelectroelastic planes under the action of a heat flow and remote magnetoelectromechanical loadings is considered, where the assumption o...A magnetoelectrically permeable interface crack between two semi-infinite magnetoelectroelastic planes under the action of a heat flow and remote magnetoelectromechanical loadings is considered, where the assumption of frictionless contact between two dissimilar half-planes is adopted. Not only the solutions of the interface crack problem are presented in an explicit form, but also the general condition for the transition from a perfect thermal contact of two mag- netoelectroelastic bodies to their separation is given.展开更多
基金Project supported by the National Natural Science Foundation of China(No.10572110)the Doctorate Foundation of the Chinese Education Ministrythe Doctorate Foundation of Xi'an Jiaotong University.
文摘By modeling metal as a special piezoelectric material with extremely small piezoelectricity and extremely large permittivity, we have obtained the analytical solutions for an interracial permeable crack in metal/piezoelectric bimaterials by means of the generalized Stroh formalism. The analysis shows that the stress fields near a permeable interracial crack tip are usually with three types of singularities: r^-1/2±iε and r^-1/2. Further numerical calculation on the oscillatory index ε are given for 28 types of metal/piezoelectric bimaterials combined by seven commercial piezoelectric materials: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7 and PZT-PIC 151 and four metals: copper, silver, lead and aluminum, respectively. The explicit expressions of the crack tip energy release rate (ERR) and the crack tip generalized stress intensity factors (GSIF) are obtained. It is found that both the ERR and GSIF are independent of the electric displacement loading, although they seriously depends on the mechanical loadings.
基金supported by the program for the OIT of Higher Learning Institutions of Shanxi,the National Natural Science Foundation of China(Grant Nos.11302143 and 11472185)the Natural Science Foundation of Shanxi(Grant No.2014021013)
文摘It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.
基金supported by the National Natural Science Foundation of China (Nos. 10772123 and 11072160)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0971)the Natural Science Fund for Outstanding Younger of Hebei Province (A2009001624), China
文摘A magnetoelectrically permeable interface crack between two semi-infinite magnetoelectroelastic planes under the action of a heat flow and remote magnetoelectromechanical loadings is considered, where the assumption of frictionless contact between two dissimilar half-planes is adopted. Not only the solutions of the interface crack problem are presented in an explicit form, but also the general condition for the transition from a perfect thermal contact of two mag- netoelectroelastic bodies to their separation is given.