This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB ...This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.展开更多
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ...Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical charact...Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.展开更多
In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks,this study realizes the simulation of the welding process through elastic-plastic finite element theory,thermal-structural ...In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks,this study realizes the simulation of the welding process through elastic-plastic finite element theory,thermal-structural sequential coupling,and the birth-death element method.The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress.Furthermore,the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder.The results indicate that fatigue cracks at the weld toe of the top deck,the weld root of the top deck,and the opening of the transverse diaphragm will not propagate under the action of a standard vehicle load.However,the inclusion of residual stress leads to the propagation of these cracks.When considering residual stress,the fatigue crack propagation paths at the weld toe of the transverse diaphragm and the U-rib weld toe align with those observed in actual bridges.In the absence of residual stress,the cracks at the toe of the transverse diaphragm with a 15%mass loss rate are categorized as type I cracks.Conversely,when residual stress is considered,these cracks become I-II composite cracks.Residual stress significantly alters the cumulative energy release rate of the three fracturemodes.Therefore,incorporating the influence of residual stress is essential when assessing the fatigue performance of corroded steel box girders in long-span bridges.展开更多
Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheet...Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheets with and without crack notch were designed to carry out in-situ tensile experiments under 150℃(the same temperature of rolling),with the aim to understand their crack propagation mechanism.The scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)techniques were utilized to reveal microstructural evolution in real time at designated displacements.The results show that the prismatic slip,basal slip,and extension twining play synergistic role in coordinating strain during the tensile process in ZM21 alloy sheet at 150℃.In both tensile samples with and without crack notch,localized strain is mainly concentrated at relatively fine grain area and the grain boundaries or triple junctions of the grains with large basal Schmid factor(SF)difference,which eventually leads to severe surface roughening and subsequent crack initiation.Compared with the sample without crack notch,the pre-cracked sample exhibits severer deformation at the crack tip due to strain concentration.Strain gradient distribution is observed at the crack tip region in the pre-cracked sample.The crack propagation path of the sample with pre-crack is identified and the underlying mechanism is also discussed.展开更多
The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)wa...The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications.展开更多
Fine-grained magnesium was tested under stress-controlled tension-tension cyclic loading at -30 ℃ and the tested sample was observed using scanning electron microscope and electron backscatter diffraction to explore ...Fine-grained magnesium was tested under stress-controlled tension-tension cyclic loading at -30 ℃ and the tested sample was observed using scanning electron microscope and electron backscatter diffraction to explore the fatigue behavior and crack propagation. The fatigue data showed that the material experienced cyclic softening followed by cyclic hardening before the final fracture failure. The microscopic observations demonstrated that the cracks were almost perpendicular to the loading direction with some zigzags and the cracks progressed along both small angle grain boundaries and large angle grain boundaries. Although the cracks were mainly propagated along large angle grain boundaries, the value of grain boundary angle was not the primary factor to determine the crack propagation direction. The local residual strain from the rolling process was released due to the crack propagation and there was more strain relaxation at regions closer to the cracks.展开更多
The numerical simulation results utilizing the Peridynamics(PD)method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japane...The numerical simulation results utilizing the Peridynamics(PD)method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japanese prototype lining test.The load structure model takes into account the cracking process and distribution of the lining segment under the influence of local bias pressure and lining thickness.In addition,the influence of preset cracks and lining section formon the crack propagation of the concrete lining model is studied.This study evaluates the stability and sustainability of tunnel structure by the Peridynamics method,which provides a reference for the analysis of the causes of lining cracks,and also lays a foundation for the prevention,reinforcement and repair of tunnel lining cracks.展开更多
The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method.Both dynamic and static stretching resu...The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method.Both dynamic and static stretching results show that different orientation angles can induce the crack propagation mode,microscopic morphology,the free energy,crack area change,and causing fracture failure.Crack propagation mode depends on the dislocation activity near the crack tip.Brittle propagation of the crack occurs due to dislocation always at crack tip.Dislocation is emitted at the front end of the crack tip and plastic deformation occurs,which belongs to ductile propagation.The orientation angles of 9°and 14°are brittleductile mixed propagation,while the orientation angles of 19°and 30°are brittle propagation and no dislocation is formed under dynamic tension.The vacancy and vacancy connectivity phenomenon would appear when the orientation angle is14°under static tension,and the crack would be ductile propagation.While the orientation angle is 19°and 30°,the crack propagates in a certain direction,which is a kind of brittle propagation.This work has some practical significance in preventing material fracture failure and improving material performance.展开更多
Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high c...Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.展开更多
How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but difficult issue in fracture mechanics.Peridynamics is a recently developed nonlocal continuum formulation t...How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but difficult issue in fracture mechanics.Peridynamics is a recently developed nonlocal continuum formulation that can spontaneously predict the crack nucleation,branch and propagation in materials and structures through a meshfree discrete technique.In this paper,the peridynamic motion equation with boundary traction is improved by simplifying the boundary transfer functions.We calculate the critical cracking load and the fracture angles of the plate with multiple cracks under uniaxial tension.The results are consistent with those predicted by classical fracture mechanics.The fracture mode and crack propagation path are also determined.The calculation shows that the brittle fracture process of the plate with multiple cracks can be conveniently and correctly simulated by the peridynamic motion equation with boundary conditions.展开更多
Austempered ductile iron(ADI)is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength,fatigue resistance,and wear resistance compared to o...Austempered ductile iron(ADI)is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength,fatigue resistance,and wear resistance compared to other cast irons.The amount and size of the nodules can be controlled by the chemical composition and austenitizing temperature.As the nodules have lower stiffness than the matrix and can act as stress concentrators,they influence crack propagation.However,the crack propagation mechanism in ADI is not yet fully understood.In this study,we describe a numerical investigation of crack propagation in ADIs subjected to cyclic loading.The numerical model used to calculate the stress intensity factors in the material under the given conditions is built with the aid of Abaqus commercial finite element code.The crack propagation routine,which is based on the Paris law,is implemented in Python.The results of the simulation show that the presence of a nodule generates a shear load on the crack tip.Consequently,even under uniaxial tensile loading,the presence of the nodule yields a non-zero stress intensity factor in mode II,resulting in a deviation in the crack propagation path.This is the primary factor responsible for changing the crack propagation direction towards the nodule.Modifying the parameters,for example,increasing the nodule size or decreasing the distance between the nodule and crack tip,can intensify this effect.In simulations comparing two different ADIs with the same graphite fraction area,the crack in the material with more nodules reaches another nodule in a shorter propagation time(or shorter number of cycles).This suggests that the high fatigue resistance observed in ADIs may be correlated with the number of nodules intercepted by a crack and the additional energy required to nucleate new cracks.In summary,these findings contribute to a better understanding of crack propagation in ADIs,provide insights into the relationship between the presence of nodules and the fatigue resistance of these materials,and support studies that associate the increased fatigue resistance with a higher number of graphite nodules.These results can also help justify the enhanced fatigue resistance of ADIs when compared to other cast irons.展开更多
The crack propagation rates of T6 peak aging and T7951 secondary aging 7055 aluminium alloys were tested under stress ratios (R) of 0.6, 0.05 and ?1, respectively. The microstructures and fracture surfaces were analyz...The crack propagation rates of T6 peak aging and T7951 secondary aging 7055 aluminium alloys were tested under stress ratios (R) of 0.6, 0.05 and ?1, respectively. The microstructures and fracture surfaces were analyzed by TEM and SEM. The results reveal that the crack propagation rate is affected by the stress ratio and microstructure such as the distribution, dimension and volume fraction of matrix precipitates, grain boundary precipitates and precipitate free zone. For both heat-treated specimens, crack propagation rate increases with the improvement of R when it is a positive value while crack propagation rate at R=?1 is much similar to that at R=0.06. The crack growth rates exhibit no obvious difference in lower stress intensity factor range (ΔK), while the difference starts to be obvious when ΔK exceeds certain value. The fracture analysis testifies a better fracture toughness for 7055-T7951 with a smaller striation space in Paris region.展开更多
By deriving the stress concentration factor of theestimation approach for residual fatigue life’ an estimationapproach for structure crack propagation based on multiplefactors correction is proposed. Then’ the quant...By deriving the stress concentration factor of theestimation approach for residual fatigue life’ an estimationapproach for structure crack propagation based on multiplefactors correction is proposed. Then’ the quantitativeexpression among the structure factor’ stress ratio’ loadingtype’ the manufacture processing factor and the crackpropagation is achieved. The proposed approach iimplemented in a case study for an instance structure’ and theinfluences of correction factors on the crack propagation areanalyzed. Meanwhile’ the probabilistic method based onWeibull distribution probability density function is selected toevaluate the precision of the corrected estimation approach’and the probability density of results is calculated by theprobability density function. It is shown that the resultsestimated by the corrected approach is more precise than thoseestimated by the fracture mechanics, and they are closer to thetest data.展开更多
The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test...The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.展开更多
Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particle...Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.展开更多
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock...Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.展开更多
The aspects of two pipeline steels with different technologies were investigated by using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD). The microstructure presents a typica...The aspects of two pipeline steels with different technologies were investigated by using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD). The microstructure presents a typical acicular ferrite characteristic with fine particles of martensite/austenite (M/A) constituent, which distributes in grains and at grain boundaries. The bulk textures of the pipeline steel plate are {112}〈110〉 and 〈111〉 fibers, respectively, and the {112}〈110〉 component is the favorable texture benefiting for drop weight tear test. Moreover, low angle boundaries and low coincidence site lattice boundaries are inactive and more resistant to fracture than high energy random boundaries.展开更多
In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many...In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.12302437)Natural Science Foundation of Jiangsu Province (BK20230939)China Postdoctoral Science Foundation (2021M701710)。
文摘This paper investigates the three-dimensional crack propagation and damage evolution process of metallic column shells under internal explosive loading.The calibration of four typical failure parameters for 40CrMnSiB steel was conducted through experiments and subsequently applied to simulations.The numerical simulation results employing the four failure criteria were compared with the differences and similarities observed in freeze-recovery tests and ultra-high-speed tests.This analysis addressed the critical issue of determining failure criteria for the fracture of a metal shell under internal explosive loads.Building upon this foundation,the damage parameter D_(c),linked to the cumulative crack density,was defined based on the evolution characteristics of a substantial number of cracks.The relationship between the damage parameter and crack velocity over time was established,and the influence of the internal central pressure on the damage parameter and crack velocity was investigated.Variations in the fracture modes were found under different failure criteria,with the principal strain failure criterion proving to be the most effective for simulating 3D crack propagation in a pure shear fracture mode.Through statistical analysis of the shell penetration fracture radius data,it was determined that the fracture radius remained essentially constant during the crack evolution process and could be considered a constant.The propagation velocity of axial cracks ranged between 5300 m/s and 12600 m/s,surpassing the Rayleigh wave velocity of the shell material and decreasing linearly with time.The increase in shell damage exhibited an initial rapid phase,followed by deceleration,demonstrating accelerated damage during the propagation stage of the blast wave and decelerated damage after the arrival of the rarefaction wave.This study provides an effective approach for investigating crack propagation and damage evolution.The derived crack propagation and damage evolution law serves as a valuable reference for the development of crack velocity theory and the construction of shell damage evolution modes.
基金supported by the National Natural Science Foundation of China(Grant No.42372310).
文摘Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
基金This researchwas supported by the National Natural Science Foundation of China(No.52227805)the Fundamental Research Funds for Central Universities(No.2022JCCXLJ01).Awards were granted to the author Liyun Yang.
文摘Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation.Therefore,evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting.In this study,ANSYS/LS-DYNA was used for blasting numerical simulation,in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed.Moreover,ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors(DSIFs).The universal function was calculated by the fractalmethod.The results show that:the compressive wave causes the crack to close and the reflected tensile wave drives the crack to initiate and propagate,and failure mode is mainly tensile failure.The crack propagation velocity varies with time,which increases at first and then decreases,and the crack arrest occurs due to the attenuation of stress waves and dissipation of the blasting energy.In addition,crack arrest toughness is smaller than the crack initiation toughness,applied pressure waveforms(such as the peak pressure,duration,waveforms,wavelengths and loading rates)have a great influence on DSIFs.It is conducive to our deep understanding or the study of blasting stress waves dominated fracture,suggesting a broad reference for the further development of rock blasting in engineering practice.
基金supported by a grant from the Key Technologies Research and Development Program(No.2021YFF0602005)Jiangsu Key Research and Development Plan(Nos.BE2022129,BE2022134)the Fundamental Research Funds for the Central Universities(Nos.2242022k30031,2242022k30033),which are gratefully acknowledged.
文摘In order to investigate the fatigue performance of orthotropic anisotropic steel bridge decks,this study realizes the simulation of the welding process through elastic-plastic finite element theory,thermal-structural sequential coupling,and the birth-death element method.The simulated welding residual stresses are introduced into the multiscale finite element model of the bridge as the initial stress.Furthermore,the study explores the impact of residual stress on crack propagation in the fatigue-vulnerable components of the corroded steel box girder.The results indicate that fatigue cracks at the weld toe of the top deck,the weld root of the top deck,and the opening of the transverse diaphragm will not propagate under the action of a standard vehicle load.However,the inclusion of residual stress leads to the propagation of these cracks.When considering residual stress,the fatigue crack propagation paths at the weld toe of the transverse diaphragm and the U-rib weld toe align with those observed in actual bridges.In the absence of residual stress,the cracks at the toe of the transverse diaphragm with a 15%mass loss rate are categorized as type I cracks.Conversely,when residual stress is considered,these cracks become I-II composite cracks.Residual stress significantly alters the cumulative energy release rate of the three fracturemodes.Therefore,incorporating the influence of residual stress is essential when assessing the fatigue performance of corroded steel box girders in long-span bridges.
基金This work was financially supported by the National Key Research and development Program(2021YFB3701000)National Science Foundation of China(No.52071036,U2037601)+1 种基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2022Z01,SKLMT-ZZKT-2022M12).
文摘Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheets with and without crack notch were designed to carry out in-situ tensile experiments under 150℃(the same temperature of rolling),with the aim to understand their crack propagation mechanism.The scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)techniques were utilized to reveal microstructural evolution in real time at designated displacements.The results show that the prismatic slip,basal slip,and extension twining play synergistic role in coordinating strain during the tensile process in ZM21 alloy sheet at 150℃.In both tensile samples with and without crack notch,localized strain is mainly concentrated at relatively fine grain area and the grain boundaries or triple junctions of the grains with large basal Schmid factor(SF)difference,which eventually leads to severe surface roughening and subsequent crack initiation.Compared with the sample without crack notch,the pre-cracked sample exhibits severer deformation at the crack tip due to strain concentration.Strain gradient distribution is observed at the crack tip region in the pre-cracked sample.The crack propagation path of the sample with pre-crack is identified and the underlying mechanism is also discussed.
基金supported by the National Natural Science Foundation of China(Grants 51865028)the Gansu Provincial Science and Technology Planning Project(Grant No.20YF8GA056).
文摘The surface composite modification of the 7050 aluminum alloy friction stir-welded joints was performed by shot peening(SP)/multiple rotation rolling(MRR)and MRR/SP,and the fatigue performance of the nugget zone(NZ)was investigated.The results demonstrated that the fatigue life of SP/MRR samples is longer than that of MRR/SP.On the plane 150μm below the surface.The grains with high angle grain boundary account for 71.5%and 34.3%for MRR/SP and SP/MRR samples,respectively.The crack propagation path of the MRR/SP is transgranular and intergranular,and it is intergranular for the MRR/SP.Multitudinous fatigue striations and some voids appeared at the fracture during the stable crack propagation stage.However,fatigue striations for SP/MRR are with smaller spacing,fewer holes,and smaller size under SP/MRR compared with fatigue fracture of MRR/SP.The differences in fatigue properties and fracture characteristics of the NZ are related to the microstructure after the two combined surface modifications.
基金the support from the Basic Energy Sciences Office at the US Department of Energy under Award no.DESC0016333。
文摘Fine-grained magnesium was tested under stress-controlled tension-tension cyclic loading at -30 ℃ and the tested sample was observed using scanning electron microscope and electron backscatter diffraction to explore the fatigue behavior and crack propagation. The fatigue data showed that the material experienced cyclic softening followed by cyclic hardening before the final fracture failure. The microscopic observations demonstrated that the cracks were almost perpendicular to the loading direction with some zigzags and the cracks progressed along both small angle grain boundaries and large angle grain boundaries. Although the cracks were mainly propagated along large angle grain boundaries, the value of grain boundary angle was not the primary factor to determine the crack propagation direction. The local residual strain from the rolling process was released due to the crack propagation and there was more strain relaxation at regions closer to the cracks.
基金supported by the National Natural Science Foundation of China (52079128).
文摘The numerical simulation results utilizing the Peridynamics(PD)method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japanese prototype lining test.The load structure model takes into account the cracking process and distribution of the lining segment under the influence of local bias pressure and lining thickness.In addition,the influence of preset cracks and lining section formon the crack propagation of the concrete lining model is studied.This study evaluates the stability and sustainability of tunnel structure by the Peridynamics method,which provides a reference for the analysis of the causes of lining cracks,and also lays a foundation for the prevention,reinforcement and repair of tunnel lining cracks.
基金Project supported by the National Natural Science Foundation of China(Grant No.52074246)。
文摘The propagation mechanism of microcracks in nanocrystalline single crystal systems under uniaxial dynamic and static tension is investigated using the phase-field-crystal method.Both dynamic and static stretching results show that different orientation angles can induce the crack propagation mode,microscopic morphology,the free energy,crack area change,and causing fracture failure.Crack propagation mode depends on the dislocation activity near the crack tip.Brittle propagation of the crack occurs due to dislocation always at crack tip.Dislocation is emitted at the front end of the crack tip and plastic deformation occurs,which belongs to ductile propagation.The orientation angles of 9°and 14°are brittleductile mixed propagation,while the orientation angles of 19°and 30°are brittle propagation and no dislocation is formed under dynamic tension.The vacancy and vacancy connectivity phenomenon would appear when the orientation angle is14°under static tension,and the crack would be ductile propagation.While the orientation angle is 19°and 30°,the crack propagates in a certain direction,which is a kind of brittle propagation.This work has some practical significance in preventing material fracture failure and improving material performance.
基金supports by National Natural Science Foundation of China(Grant Nos.51874351 and 52078495)Excellent Postdoctoral Innovative Talents Project of Hunan Province,China(Grant No.2020RC2001).
文摘Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.
基金The work was supported by the National Nature Science Foundation of China through the Grant Nos.12072145 and 11672129.
文摘How to simulate fracture mode and crack propagation path in a plate with multiple cracks is an attractive but difficult issue in fracture mechanics.Peridynamics is a recently developed nonlocal continuum formulation that can spontaneously predict the crack nucleation,branch and propagation in materials and structures through a meshfree discrete technique.In this paper,the peridynamic motion equation with boundary traction is improved by simplifying the boundary transfer functions.We calculate the critical cracking load and the fracture angles of the plate with multiple cracks under uniaxial tension.The results are consistent with those predicted by classical fracture mechanics.The fracture mode and crack propagation path are also determined.The calculation shows that the brittle fracture process of the plate with multiple cracks can be conveniently and correctly simulated by the peridynamic motion equation with boundary conditions.
文摘Austempered ductile iron(ADI)is composed of an ausferritic matrix with graphite nodules and has a wide range of applications because of its high mechanical strength,fatigue resistance,and wear resistance compared to other cast irons.The amount and size of the nodules can be controlled by the chemical composition and austenitizing temperature.As the nodules have lower stiffness than the matrix and can act as stress concentrators,they influence crack propagation.However,the crack propagation mechanism in ADI is not yet fully understood.In this study,we describe a numerical investigation of crack propagation in ADIs subjected to cyclic loading.The numerical model used to calculate the stress intensity factors in the material under the given conditions is built with the aid of Abaqus commercial finite element code.The crack propagation routine,which is based on the Paris law,is implemented in Python.The results of the simulation show that the presence of a nodule generates a shear load on the crack tip.Consequently,even under uniaxial tensile loading,the presence of the nodule yields a non-zero stress intensity factor in mode II,resulting in a deviation in the crack propagation path.This is the primary factor responsible for changing the crack propagation direction towards the nodule.Modifying the parameters,for example,increasing the nodule size or decreasing the distance between the nodule and crack tip,can intensify this effect.In simulations comparing two different ADIs with the same graphite fraction area,the crack in the material with more nodules reaches another nodule in a shorter propagation time(or shorter number of cycles).This suggests that the high fatigue resistance observed in ADIs may be correlated with the number of nodules intercepted by a crack and the additional energy required to nucleate new cracks.In summary,these findings contribute to a better understanding of crack propagation in ADIs,provide insights into the relationship between the presence of nodules and the fatigue resistance of these materials,and support studies that associate the increased fatigue resistance with a higher number of graphite nodules.These results can also help justify the enhanced fatigue resistance of ADIs when compared to other cast irons.
基金Project(51405309)supported by the National Natural Science Foundation of ChinaProject(2013024012)supported by the Natural Science Foundation of Liaoning Province,China
文摘The crack propagation rates of T6 peak aging and T7951 secondary aging 7055 aluminium alloys were tested under stress ratios (R) of 0.6, 0.05 and ?1, respectively. The microstructures and fracture surfaces were analyzed by TEM and SEM. The results reveal that the crack propagation rate is affected by the stress ratio and microstructure such as the distribution, dimension and volume fraction of matrix precipitates, grain boundary precipitates and precipitate free zone. For both heat-treated specimens, crack propagation rate increases with the improvement of R when it is a positive value while crack propagation rate at R=?1 is much similar to that at R=0.06. The crack growth rates exhibit no obvious difference in lower stress intensity factor range (ΔK), while the difference starts to be obvious when ΔK exceeds certain value. The fracture analysis testifies a better fracture toughness for 7055-T7951 with a smaller striation space in Paris region.
基金The National Natural Science Foundation of China(No.51675098)Chinese Specialized Research Foundation for Doctoral Program of Higher Education(No.20130092110003)Graduate Student Research Innovation Foundation of Jiangsu Province(No.KYLX15_0059)
文摘By deriving the stress concentration factor of theestimation approach for residual fatigue life’ an estimationapproach for structure crack propagation based on multiplefactors correction is proposed. Then’ the quantitativeexpression among the structure factor’ stress ratio’ loadingtype’ the manufacture processing factor and the crackpropagation is achieved. The proposed approach iimplemented in a case study for an instance structure’ and theinfluences of correction factors on the crack propagation areanalyzed. Meanwhile’ the probabilistic method based onWeibull distribution probability density function is selected toevaluate the precision of the corrected estimation approach’and the probability density of results is calculated by theprobability density function. It is shown that the resultsestimated by the corrected approach is more precise than thoseestimated by the fracture mechanics, and they are closer to thetest data.
基金supported by the National Natural Science Foundation of China(No.51804309)the Yue Qi Young Scholar Project(2019QN02)+5 种基金Distinguished Scholar Project(2017JCB02)from China University of Mining and Technology-Beijing,Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.SHJT-17-42.10)National Natural Science Foundation of China(No.U1910206)the fund of Beijing Outstanding Young Scientist Program(BJJWZYJH01201911413037)the State Key Laboratory of Coal Resources and Safe Mining(Nos.SKLCRSM16KFB07,SKLCRSM16DCB01 and SKLCRSM17DC11)Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)the key project of Key Laboratory of Coal Mine Safety and High Efficiency Mining Co-established by the Province and the Ministry(Anhui University of Science and Technology)(No.JYBSYS2018201).
文摘The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction.
基金This work was supported by the Natural Science Foundation of Liaoning Province, China under grant No. 20032007.
文摘Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.
基金Project(2014QNB31)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51674248)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.
文摘The aspects of two pipeline steels with different technologies were investigated by using transmission electron microscopy (TEM) and electron back-scattered diffraction (EBSD). The microstructure presents a typical acicular ferrite characteristic with fine particles of martensite/austenite (M/A) constituent, which distributes in grains and at grain boundaries. The bulk textures of the pipeline steel plate are {112}〈110〉 and 〈111〉 fibers, respectively, and the {112}〈110〉 component is the favorable texture benefiting for drop weight tear test. Moreover, low angle boundaries and low coincidence site lattice boundaries are inactive and more resistant to fracture than high energy random boundaries.
文摘In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms.