期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Dynamic caustics experimental study on interaction between propagating crack and deformity inclusions in primary structure 被引量:2
1
作者 岳中文 韩瑞杰 +1 位作者 张旺 刘伟 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期73-77,共5页
The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadr... The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions. 展开更多
关键词 dynamic caustics deformity inclusion dynamic stress intensity factor(DSIF) crack propagation velocity
下载PDF
AN EXPERIMENTAL-NUMERICAL METHOD FOR MEASURING CRACK PROPAGATING VELOCITIES UNDER STRESS WAVE LOADING
2
作者 G.Y. Sha, F.C. Jiang D. Wang, D.K. Liu, and R.T.Department of Mechanical Engineering, Harbin Engineering University, Harbin 150001, ChinaShenyang National Laboratory for Materials Science, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期556-560,共5页
An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopki... An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication. 展开更多
关键词 stress wave loading dynamic fracture crack propagating velocity experimental-numerical method
下载PDF
Experimental study on dynamic fracture behavior of three-point bending beam with double deformity inclusions 被引量:2
3
作者 岳中文 宋耀 +2 位作者 韩瑞杰 张旺 郭超 《Journal of Southeast University(English Edition)》 EI CAS 2016年第3期333-338,共6页
The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic ... The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic caustic method. The experimental results indicate that the fluctuation of crack propagation velocity v first increases and then decreases in the crack propagation process. During the process of crack propagating into the inclusion area, the fracture resistance effect of the circular inclusion is the most significant and the effects of triangular and square inclusions are less obvious. The stress intensity factor near the crack tip increases during the propagation process and reaches its maximum value when the crack tip is close to the inclusions. The crack tip’s dynamic stress intensity factor ( DSIF) decreases when the crack exceeds the middle area of the double inclusions. These results provide an experimental basis and scientific foundation to strengthen the evaluation and fracture analysis of the structure containing deformity inclusions. 展开更多
关键词 dynamic caustics deformity inclusion dynamic stress intensity factor crack propagation velocity
下载PDF
Effect of loading rate on fracture behaviors of shale under mode I loading 被引量:11
4
作者 XIE Qin LI Sheng-xiang +2 位作者 LIU Xi-ling GONG Feng-qiang LI Xi-bing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3118-3132,共15页
In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split ... In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split Hopkinson pressure bar(SHPB)setup and INSTRON1346 servo-testing machine under pure mode I loading conditions.During the test,the crack propagation process was recorded by high-speed(HS)camera,and the acoustic emission(AE)signal generated by the fracture was collected by acoustic emission(AE)system.At the same time,crack propagation gauge(CPG)was used to measure the crack propagation velocity of the specimen.The results show that the crack propagation velocity and fracture toughness of shale have a positive correlation with the loading rate.The relationship among the crack propagation velocity,the fracture toughness and the loading rate is established under the static loading condition.In addition,the characteristics of AE signals with different loading rates are analyzed.It is found that the AE signals generated by microcrack growth decrease with the increase of loading rates.Meanwhile,the turning point of cumulative counting moves forward as the loading rate increases,which shows that the AE signal generated by shale fracture at low loading rate mainly comes from the initiation and propagation of microcracks,while at high loading rate it mainly comes from the formation of macro large-scale cracks.The fracture mechanism that causes shale fracture toughness and crack propagation velocity to vary with loading rate is also discussed based on the analysis results of AE signals. 展开更多
关键词 SHALE loading rate cracked straight through Brazilian disc fracture toughness acoustic emission crack propagation velocity
下载PDF
High-Temperature Deformation and Low-Temperature Fracture Behavior of Steel Slag Rubber Asphalt Mixture Surface Layer 被引量:1
5
作者 Zhiqiang Shu Jianmin Wu +2 位作者 Shi Chen Shan Yi haoqing Li 《Journal of Renewable Materials》 SCIE EI 2022年第2期453-467,共15页
Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation inf... Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation infrastructure construction.However,there are few evaluation systems established on the high-temperature deformation and low-temperature fracture behavior of steel slag rubber asphalt mixture(SSRAM).This study explores the perfor-mance of SSRAM by uniaxial penetration test,Semi-Circular Bending(SCB)test and evaluates test data through regression analysis.The uniaxial penetration test results shows that the failure deformation of SSRAM increases with the increase of steel slag content.According to the minimum allowable permanent deformation(R TS-min),the deformation of SSRAM should be controlled within 3 mm.Meanwhile,the cracking index of the SSRAM surface layer calculated at low temperature can meet the design requirements.The SCB test results show that the stress peak degradation rate(specimens with 10 mm notch are compared with 0 mm)of SSRAM with 40%steel slag content is 20.04%.That means proper steel slag content makes the stress peak degradation rate of SSRAM reaches the lowest value.The calculation results of fracture energy density(J_(1C))show that the steel slag additive reduced the fracture energy density of SSRAM.However,it is still proved that SSRAM with 40%steel slag has the best low-temperature fracture performance based on critical fracture toughness(K_(1C))and fracture stress peak.Further-more,the crack propagation velocity parametric equation of SSRAM is proposed through fracture mechanics theory and the increase of velocity is exponential.Considering the high-temperature deformation resistance and low-temperature fracture property,the SSRAM surface layer with 40%steel slag content showed a batter application potential. 展开更多
关键词 Steel slag asphalt mixture uniaxial penetration test SCB test deformation resistance crack propagation velocity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部