Microseismic monitoring has been widely used in mines for monitoring and predicting dynamic disasters such as rockbursts and waterbursts. However, to develop high-precision microseismic monitoring systems, the propaga...Microseismic monitoring has been widely used in mines for monitoring and predicting dynamic disasters such as rockbursts and waterbursts. However, to develop high-precision microseismic monitoring systems, the propagation patterns of microseismic waves under complex geological conditions must be elucidated. To achieve this aim, a simulation model of a typical coalmine was designed using similar materials according to the similarity theory to simulate the mining process. Geophones were embedded into the model to detect the propagation of elastic waves from microseisms. The results show that in an unmined solid rock mass, the wave velocity in shallow rock strata is mainly affected by geologically weak planes, whereas in deep strata it is affected mainly by the density of the rock mass. During propagation, the amplitude first decreases and then increases rapidly with increasing propagation distance from the coal layer. After mining, our results indicate that the goaf causes significant attenuation of the wave velocity. After the goaf was backfilled, the velocity attenuation is reduced to some extent but not eliminated. The results of this study can be used as guidelines for designing and applying microseismic monitoring systems in mines.展开更多
Feasibility of a wave propagation-based active crack detection technique for nondestructive evaluations (NDE) of concrete structures with surface bonded and embedded piezoelectric-ceramic (PZT) patches was studied...Feasibility of a wave propagation-based active crack detection technique for nondestructive evaluations (NDE) of concrete structures with surface bonded and embedded piezoelectric-ceramic (PZT) patches was studied. At first, the wave propagation mechanisms in concrete were analyzed. Then, an active sensing system with integrated actuators/sensors was constructed. One PZT patch was used as an actuator to generate high frequency waves, and the other PZT patches were used as sensors to detect the propagating wave. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the intact structure from the recorded signal of the damaged structure. In the experimental study, progressive cracked damage inflicted artificially on the plain concrete beam is assessed by using both lateral and thickness modes of the PZT patches. The results indicate that with the increasing number and severity of cracks, the magnitude of the sensor output decreases for the surface bonded PZT patches, and increases for the embedded PZT patches.展开更多
The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic ...The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic caustic method. The experimental results indicate that the fluctuation of crack propagation velocity v first increases and then decreases in the crack propagation process. During the process of crack propagating into the inclusion area, the fracture resistance effect of the circular inclusion is the most significant and the effects of triangular and square inclusions are less obvious. The stress intensity factor near the crack tip increases during the propagation process and reaches its maximum value when the crack tip is close to the inclusions. The crack tip’s dynamic stress intensity factor ( DSIF) decreases when the crack exceeds the middle area of the double inclusions. These results provide an experimental basis and scientific foundation to strengthen the evaluation and fracture analysis of the structure containing deformity inclusions.展开更多
The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadr...The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.展开更多
In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split ...In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split Hopkinson pressure bar(SHPB)setup and INSTRON1346 servo-testing machine under pure mode I loading conditions.During the test,the crack propagation process was recorded by high-speed(HS)camera,and the acoustic emission(AE)signal generated by the fracture was collected by acoustic emission(AE)system.At the same time,crack propagation gauge(CPG)was used to measure the crack propagation velocity of the specimen.The results show that the crack propagation velocity and fracture toughness of shale have a positive correlation with the loading rate.The relationship among the crack propagation velocity,the fracture toughness and the loading rate is established under the static loading condition.In addition,the characteristics of AE signals with different loading rates are analyzed.It is found that the AE signals generated by microcrack growth decrease with the increase of loading rates.Meanwhile,the turning point of cumulative counting moves forward as the loading rate increases,which shows that the AE signal generated by shale fracture at low loading rate mainly comes from the initiation and propagation of microcracks,while at high loading rate it mainly comes from the formation of macro large-scale cracks.The fracture mechanism that causes shale fracture toughness and crack propagation velocity to vary with loading rate is also discussed based on the analysis results of AE signals.展开更多
Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation inf...Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation infrastructure construction.However,there are few evaluation systems established on the high-temperature deformation and low-temperature fracture behavior of steel slag rubber asphalt mixture(SSRAM).This study explores the perfor-mance of SSRAM by uniaxial penetration test,Semi-Circular Bending(SCB)test and evaluates test data through regression analysis.The uniaxial penetration test results shows that the failure deformation of SSRAM increases with the increase of steel slag content.According to the minimum allowable permanent deformation(R TS-min),the deformation of SSRAM should be controlled within 3 mm.Meanwhile,the cracking index of the SSRAM surface layer calculated at low temperature can meet the design requirements.The SCB test results show that the stress peak degradation rate(specimens with 10 mm notch are compared with 0 mm)of SSRAM with 40%steel slag content is 20.04%.That means proper steel slag content makes the stress peak degradation rate of SSRAM reaches the lowest value.The calculation results of fracture energy density(J_(1C))show that the steel slag additive reduced the fracture energy density of SSRAM.However,it is still proved that SSRAM with 40%steel slag has the best low-temperature fracture performance based on critical fracture toughness(K_(1C))and fracture stress peak.Further-more,the crack propagation velocity parametric equation of SSRAM is proposed through fracture mechanics theory and the increase of velocity is exponential.Considering the high-temperature deformation resistance and low-temperature fracture property,the SSRAM surface layer with 40%steel slag content showed a batter application potential.展开更多
An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopki...An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication.展开更多
基金financially supported by the State Key Research Development Program of China (No. 2016YFC0801408)the National Natural Science Foundation of China (No. 51674014)the Key Project of National Natural Science Foundation of China (No. 51634001)
文摘Microseismic monitoring has been widely used in mines for monitoring and predicting dynamic disasters such as rockbursts and waterbursts. However, to develop high-precision microseismic monitoring systems, the propagation patterns of microseismic waves under complex geological conditions must be elucidated. To achieve this aim, a simulation model of a typical coalmine was designed using similar materials according to the similarity theory to simulate the mining process. Geophones were embedded into the model to detect the propagation of elastic waves from microseisms. The results show that in an unmined solid rock mass, the wave velocity in shallow rock strata is mainly affected by geologically weak planes, whereas in deep strata it is affected mainly by the density of the rock mass. During propagation, the amplitude first decreases and then increases rapidly with increasing propagation distance from the coal layer. After mining, our results indicate that the goaf causes significant attenuation of the wave velocity. After the goaf was backfilled, the velocity attenuation is reduced to some extent but not eliminated. The results of this study can be used as guidelines for designing and applying microseismic monitoring systems in mines.
基金Funded by the National Natural Science Foundation of China (51178305)the Key Projects in the Science & Technology Pillar Program of Tianjin (11ZCKFSF00300)
文摘Feasibility of a wave propagation-based active crack detection technique for nondestructive evaluations (NDE) of concrete structures with surface bonded and embedded piezoelectric-ceramic (PZT) patches was studied. At first, the wave propagation mechanisms in concrete were analyzed. Then, an active sensing system with integrated actuators/sensors was constructed. One PZT patch was used as an actuator to generate high frequency waves, and the other PZT patches were used as sensors to detect the propagating wave. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the intact structure from the recorded signal of the damaged structure. In the experimental study, progressive cracked damage inflicted artificially on the plain concrete beam is assessed by using both lateral and thickness modes of the PZT patches. The results indicate that with the increasing number and severity of cracks, the magnitude of the sensor output decreases for the surface bonded PZT patches, and increases for the embedded PZT patches.
基金The National Basic Research Program of China(973 Program)(No.2011CB606105)the National Natural Science Foundation of China(No.51374210,51134025)
文摘The dynamic fracture behavior of the three-point bending beam with double deformity inclusions under impact loading is studied by using digital high-speed photography in combination with the transmission-type dynamic caustic method. The experimental results indicate that the fluctuation of crack propagation velocity v first increases and then decreases in the crack propagation process. During the process of crack propagating into the inclusion area, the fracture resistance effect of the circular inclusion is the most significant and the effects of triangular and square inclusions are less obvious. The stress intensity factor near the crack tip increases during the propagation process and reaches its maximum value when the crack tip is close to the inclusions. The crack tip’s dynamic stress intensity factor ( DSIF) decreases when the crack exceeds the middle area of the double inclusions. These results provide an experimental basis and scientific foundation to strengthen the evaluation and fracture analysis of the structure containing deformity inclusions.
基金The National Natural Science Foundation of China(No.51374210,51134025)the 111 Project(No.B14006)
文摘The approach combining the dynamic caustics method with high-speed photography technology is used to study the interaction between propagating cracks and three kinds of deformity inclusions( cylinder inclusion, quadruple inclusion and triangular inclusion) under lowvelocity impact loading. By recording the caustic spots of crack tips at different moments during the crack propagation, the variation regulations of dynamic stress intensity factors( DSIF) and crack growth velocity with respect to time are obtained. The experimental results showthat the resistance effects to crack growth are varied with different shapes of inclusions in specimens, and the quadruple inclusion's effect is more apparent. The distortion degree of caustic spots is affected by the shapes of inclusions as well, and the situation is more serious for cylinder and quadruple inclusions. The overall values of DSIFs of triangular inclusion specimen are greater than the others, and the crack growth velocities, characteristic sizes and DSIFs showprocesses of fluctuations because of the disturbance of reflection waves in specimens. The results provide an experimental basis for the analysis of strength and impact-resistance ability in structures with deformity inclusions.
基金Project(41630642)supported by the National Natural Science Foundation of China。
文摘In this study,the effect of loading rate on shale fracture behaviors was investigated under dynamic and static loading conditions.Cracked straight through Brazilian disc(CSTBD)shale specimens were tested with a split Hopkinson pressure bar(SHPB)setup and INSTRON1346 servo-testing machine under pure mode I loading conditions.During the test,the crack propagation process was recorded by high-speed(HS)camera,and the acoustic emission(AE)signal generated by the fracture was collected by acoustic emission(AE)system.At the same time,crack propagation gauge(CPG)was used to measure the crack propagation velocity of the specimen.The results show that the crack propagation velocity and fracture toughness of shale have a positive correlation with the loading rate.The relationship among the crack propagation velocity,the fracture toughness and the loading rate is established under the static loading condition.In addition,the characteristics of AE signals with different loading rates are analyzed.It is found that the AE signals generated by microcrack growth decrease with the increase of loading rates.Meanwhile,the turning point of cumulative counting moves forward as the loading rate increases,which shows that the AE signal generated by shale fracture at low loading rate mainly comes from the initiation and propagation of microcracks,while at high loading rate it mainly comes from the formation of macro large-scale cracks.The fracture mechanism that causes shale fracture toughness and crack propagation velocity to vary with loading rate is also discussed based on the analysis results of AE signals.
基金This research was funded by the Department of Transportation of Hebei Province(Grant No.TH1-202019)。
文摘Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation infrastructure construction.However,there are few evaluation systems established on the high-temperature deformation and low-temperature fracture behavior of steel slag rubber asphalt mixture(SSRAM).This study explores the perfor-mance of SSRAM by uniaxial penetration test,Semi-Circular Bending(SCB)test and evaluates test data through regression analysis.The uniaxial penetration test results shows that the failure deformation of SSRAM increases with the increase of steel slag content.According to the minimum allowable permanent deformation(R TS-min),the deformation of SSRAM should be controlled within 3 mm.Meanwhile,the cracking index of the SSRAM surface layer calculated at low temperature can meet the design requirements.The SCB test results show that the stress peak degradation rate(specimens with 10 mm notch are compared with 0 mm)of SSRAM with 40%steel slag content is 20.04%.That means proper steel slag content makes the stress peak degradation rate of SSRAM reaches the lowest value.The calculation results of fracture energy density(J_(1C))show that the steel slag additive reduced the fracture energy density of SSRAM.However,it is still proved that SSRAM with 40%steel slag has the best low-temperature fracture performance based on critical fracture toughness(K_(1C))and fracture stress peak.Further-more,the crack propagation velocity parametric equation of SSRAM is proposed through fracture mechanics theory and the increase of velocity is exponential.Considering the high-temperature deformation resistance and low-temperature fracture property,the SSRAM surface layer with 40%steel slag content showed a batter application potential.
文摘An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication.