The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading f...The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D.展开更多
To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow str...To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique(SSRT) with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 · 10 5s 1to 5 · 10 7s 1, and becomes stable when strain rate is lower than 5 · 10 7s 1. SCC propagation of the steel in the solution at open circuit potential(OCP) needs sufficient hydrogen which is supplied at a certain strain rate.Fracture surface at OCP has similar characteristics with that at cathodic polarization 1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking(HIC).All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution(AD).展开更多
The compressive behavior of laminates with a deeply embedded circular delamination was studied numerically and experimentally.In the finite element analysis(FEA),virtual crack closure technique(VCCT) and B-K law were ...The compressive behavior of laminates with a deeply embedded circular delamination was studied numerically and experimentally.In the finite element analysis(FEA),virtual crack closure technique(VCCT) and B-K law were employed to simulate the delamination growth,and the contact of the two substrates was considered.The effect of the delamination size and through-thickness position on the compressive behavior of laminates with an artificially embedded circular delamination was discussed.It is found that the through-thickness position affects the buckling mode,which then strongly influences delamination growth speed and direction,as well as the dominant component energy release rate(ERR).The numerical results agreed well with the experimental results.展开更多
Large numbers of aircraft composite structures were researched,and the distribution of delamination sizes and though thickness positions in the composite laminates were investigated.An experiment was conducted to prob...Large numbers of aircraft composite structures were researched,and the distribution of delamination sizes and though thickness positions in the composite laminates were investigated.An experiment was conducted to probe into the effect of delamination sizes and through thickness positions on the compressive strengths of laminates with single embedded circular delamination with the most dangerous delamination sizes and positions defined from the distribution.A shell model was established for compressive strength prediction,and the virtual crack closure technique(VCCT) was employed for the strain energy release rate calculation.The finite element(FE) prediction was in good agreement with the experimental measurements,for the predicted compressive strengths stood within 10%error of experimental results.It was observed that the compressive strength was highly effected by the delamination size,while the though thickness position of delamination did not have significant effect on the compressive strength.展开更多
基金supported by the Ministry of Education of China(No.208152)Gansu Natural Science Foundation(No.3ZS061-A52-47).
文摘The extra-low cyclic fracture problem of medium carbon steel under axial fatigue loading was investigated. Several problems, such as the relations of the cycle times to the depth and tip radius of the notch, loading frequency, loading range and the parameters of fracture design for medium carbon steel on condition of extra-low axial fatigue loading were discussed based on the experiments. Experimental results indicated that the tension-pressure fatigue loading mode was suitable for extra-low cyclic fatigue fracture design of medium carbon steel and it resulted in low energy consumption, fracture surface with high quality, low cycle times, and high efficiency. The appropriate parameters were as follows: loading frequency 3-5 Hz, notch tip radius r = (0.2-0.3) mm, opening angle α = 60°, and notch depth t = (0.14-0.17)D.
基金financial support from the National Natural Science Foundation of China (No. 51171011)
文摘To evaluate stress corrosion cracking(SCC) mechanism of low alloy ultra-high strength steel 30CrMnSiNi2 A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique(SSRT) with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 · 10 5s 1to 5 · 10 7s 1, and becomes stable when strain rate is lower than 5 · 10 7s 1. SCC propagation of the steel in the solution at open circuit potential(OCP) needs sufficient hydrogen which is supplied at a certain strain rate.Fracture surface at OCP has similar characteristics with that at cathodic polarization 1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking(HIC).All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution(AD).
文摘The compressive behavior of laminates with a deeply embedded circular delamination was studied numerically and experimentally.In the finite element analysis(FEA),virtual crack closure technique(VCCT) and B-K law were employed to simulate the delamination growth,and the contact of the two substrates was considered.The effect of the delamination size and through-thickness position on the compressive behavior of laminates with an artificially embedded circular delamination was discussed.It is found that the through-thickness position affects the buckling mode,which then strongly influences delamination growth speed and direction,as well as the dominant component energy release rate(ERR).The numerical results agreed well with the experimental results.
基金National Basic Research Program of China(2012CB720000)
文摘Large numbers of aircraft composite structures were researched,and the distribution of delamination sizes and though thickness positions in the composite laminates were investigated.An experiment was conducted to probe into the effect of delamination sizes and through thickness positions on the compressive strengths of laminates with single embedded circular delamination with the most dangerous delamination sizes and positions defined from the distribution.A shell model was established for compressive strength prediction,and the virtual crack closure technique(VCCT) was employed for the strain energy release rate calculation.The finite element(FE) prediction was in good agreement with the experimental measurements,for the predicted compressive strengths stood within 10%error of experimental results.It was observed that the compressive strength was highly effected by the delamination size,while the though thickness position of delamination did not have significant effect on the compressive strength.