The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of M...The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of Mg-Zn alloy. The Mg-6Zn magnesium alloys microalloyed with varying Cu content(0, 0.8, 1.5, 2.0 and 2.5wt.%) were fabricated by permanent mould casting, and the effects of Cu content on the microstructure and mechanical properties of as-cast Mg-6Zn alloys were studied using OM, SEM, XRD and tensile tests at room temperature. The obtained results show that the addition of Cu not only can refine the grains effectively, but also can modify the eutectic morphology and improve the mechanical properties of the alloys. The main phases of the studied alloys include α-Mg, MgZn_2, Mg_2Cu and CuMgZn. When the content of Cu exceeds 0.8wt.%, Mg_2Cu phase appears. Meanwhile, the eutectic morphology is modified into dendritic shape or lamellar structure, which has an adverse effect on the tensile properties. Furthermore, among the investigated alloys, the alloy containing 0.8% Cu shows an optimalultimate tensile strength of 196 MPa, while the alloy with 1.5wt.% Cu obtains an excellent elongation of 7.22%. The experimental alloys under different Cu contents show distinguishing fracture behaviors: the fracture of the alloy with 0.8wt.% Cu reveals a mixed mode of inter-granular and quasi-cleavage, while in other investigated alloys, the fracture behaviors are dominated by cleavage fracture.展开更多
Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this stud...Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.展开更多
For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of o...For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.展开更多
We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA- TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in...We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA- TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA- TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution.展开更多
An additional sensitivity penalty of burst mode receivers due to the extinction ratio is analyzed considering the specific transmitter control in Ethernet PON. For an extinction ratio of 6dB, a penalty of 8dB occurs a...An additional sensitivity penalty of burst mode receivers due to the extinction ratio is analyzed considering the specific transmitter control in Ethernet PON. For an extinction ratio of 6dB, a penalty of 8dB occurs additionally.展开更多
基金financially supported by the National Nature Science Foundations of China(51464032)the National Basic Research Program of China(grant No.2010CB635106)
文摘The application of Mg-Zn binary alloys is restricted due to their developed dendritic microstructure and poor mechanical properties. In this study, an alloying method was used to improve the mechanical properties of Mg-Zn alloy. The Mg-6Zn magnesium alloys microalloyed with varying Cu content(0, 0.8, 1.5, 2.0 and 2.5wt.%) were fabricated by permanent mould casting, and the effects of Cu content on the microstructure and mechanical properties of as-cast Mg-6Zn alloys were studied using OM, SEM, XRD and tensile tests at room temperature. The obtained results show that the addition of Cu not only can refine the grains effectively, but also can modify the eutectic morphology and improve the mechanical properties of the alloys. The main phases of the studied alloys include α-Mg, MgZn_2, Mg_2Cu and CuMgZn. When the content of Cu exceeds 0.8wt.%, Mg_2Cu phase appears. Meanwhile, the eutectic morphology is modified into dendritic shape or lamellar structure, which has an adverse effect on the tensile properties. Furthermore, among the investigated alloys, the alloy containing 0.8% Cu shows an optimalultimate tensile strength of 196 MPa, while the alloy with 1.5wt.% Cu obtains an excellent elongation of 7.22%. The experimental alloys under different Cu contents show distinguishing fracture behaviors: the fracture of the alloy with 0.8wt.% Cu reveals a mixed mode of inter-granular and quasi-cleavage, while in other investigated alloys, the fracture behaviors are dominated by cleavage fracture.
基金funded by the Engineering and Physical Science Research Council(EPSRC),UK(Grant Nos.EP/P027563/1 and EP/M028267/1)the Science and Technology Facilities Council(STFC)(Grant No.ST/R006105/1)the Bridging for Innovators Programme of Department for Business,Energy and Industrial Strategy(BEIS),UK.
文摘Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 60978009)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023)+1 种基金the National Basic Research Project of China (Grant No. 2011CBA00200)the Young Talents Foundation of Jiangxi Normal University,China
文摘For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11174114 and 61107055)the Natural Science Foundation of Wuxi Institute of Technology of China (Grant No.401301293)
文摘We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA- TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA- TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution.
文摘An additional sensitivity penalty of burst mode receivers due to the extinction ratio is analyzed considering the specific transmitter control in Ethernet PON. For an extinction ratio of 6dB, a penalty of 8dB occurs additionally.