In this paper,the mechanics of strip edge cracks and its propagation has been studied,and the effects of strip edge drop and stress intensity factor(SIF) on edge crack defections during cold rolling of thin strip have...In this paper,the mechanics of strip edge cracks and its propagation has been studied,and the effects of strip edge drop and stress intensity factor(SIF) on edge crack defections during cold rolling of thin strip have been discussed.An experimental investigation was presented into the effect of strip edge drop on edge cracks during cold rolling of thin strip.The edge crack increases significantly due to more inhomogeneous deformation and work hardening at the strip edge.The effective stress intensity factor range is important as it represents the major physical cause of the crack propagation.The efficiency and reliability of the SIF analytical model has been demonstrated in the study.The proposed method for predicting strip edge crack is helpful in producing defect-free products and providing an understanding of the mechanics of edge crack propagation in cold rolling of thin strip.展开更多
文摘In this paper,the mechanics of strip edge cracks and its propagation has been studied,and the effects of strip edge drop and stress intensity factor(SIF) on edge crack defections during cold rolling of thin strip have been discussed.An experimental investigation was presented into the effect of strip edge drop on edge cracks during cold rolling of thin strip.The edge crack increases significantly due to more inhomogeneous deformation and work hardening at the strip edge.The effective stress intensity factor range is important as it represents the major physical cause of the crack propagation.The efficiency and reliability of the SIF analytical model has been demonstrated in the study.The proposed method for predicting strip edge crack is helpful in producing defect-free products and providing an understanding of the mechanics of edge crack propagation in cold rolling of thin strip.