Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as compl...The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.展开更多
The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further stu...The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further studied.On the pre-weld heat-treated samples,upon solving the secondaryγ′particles in the matrix,primaryγ′particles in the base metal grew to"ogdoadically diced cubes"of about 2μm in side lengths.The pre-weld heat treatment reduced the hardness of the base metal to about HV 310.Microstructural studies using optical and fieldemission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ.The constitutional melting of the secondary,eutectic,and Zr-rich phases promoted the liquation cracking in the HAZ.The microstructure of the weld fusion zones showed the presence of fine spheroidalγ′particles with sizes of about 0.2μm after the post-weld heat treatment,which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals,respectively.Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.展开更多
The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure...The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure and initial gas-liquid ratio on the hydrate formation was studied, respectively. The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatur.es from 274.15 to 277.15 K. The results showed that hydrogen and methane can be separated Irom the (~2+ ti'action by tOrming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method, and the hydrate formation rate can be enhanced in the wa- ter-in-oil emulsion compared to pure water. The experiments provided the basic data for designing the industrial process, and setting the suitable operational conditions. The measured data ot gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.展开更多
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects...The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.展开更多
Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds, a small amount of ox...Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds, a small amount of oxygenates including H2O, CH3OH, DME and CO2 as well as a few of low carbon alkanes were found in the SGMC. After purification, the sulfur compounds, H2O, CH3OH and DME could be eliminated efficiently from the SGMC while CO2 and the low carbon alkanes were partly removed. When the unpurified SGMC, the desufurized SGMC and the totally purified SGMC were sequentially applied in cobalt-based FTS, the catalytic performance of Co/ZrO2/SiO2 catalyst was gradually improved corresponding to the degree of purification. The untreated SGMC led to the serious deactivation of the cobalt catalyst, the partially treated SGMC slowed down the deactivation rate and the totally purified SGMC resulted in little deactivation of the catalyst, which was similar to what the pure synthesis gas (the mixture of pure H2 and CO) did. The results indicated that the SGMC should be purified and the purification course used in this paper was effective for the SGMC. Furthermore, the totally purified SGMC could substitute for the pure synthesis gas in cobalt FTS.展开更多
The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The re...The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.展开更多
This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields ...This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields and selectivities of ethylene and propylene in cocracking. The difference in coking tendencies betWeen the cocracking and the separate cracking is compared as well.展开更多
The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehe...The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area.展开更多
An accurate and complete geometric model was constructed to simulate the combustion, flow and temperature environment in the radiant section of the steam cracking furnace. Simulation of flow and radiation status has u...An accurate and complete geometric model was constructed to simulate the combustion, flow and temperature environment in the radiant section of the steam cracking furnace. Simulation of flow and radiation status has utilized the standard k-ε model and P1 model. The finite-rate/eddy-dissipation (finite-rate/ED) combustion model and non-premixed combustion model were both used to simulate accurately the combustion and the operation status of the steam cracking furnace. Three different surfaces of the steam cracking furnace were obtained from the simulation, namely:the flue gas temperature field of the entrance surface in long flame burners, the central surface location of tubes, and the crossover section surface. Detailed information on the flue gas temperature and the mass concentration fraction of these different surfaces in the steam cracking furnace can also be obtained by the simulation. This paper analyzed and compared the simulation results with the two combustion models, estimated the operation status of the steam cracking furnace, and reported that the finite-rate/ED model is appropriate to simulate the steam cracking furnace by comparing key simulation data with actual test data. This work has also provided a theoretical basis for simulating and operating the steam cracking furnace.展开更多
In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camer...In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camera and then the images were processed by sketch. Based on the above description, the paper studied the fractal dimension values from different positions of coal surface as well as their changing laws with time. The results show that there is a growing parabola trend of crack dimension value in the process of coal extrusion. Accordingly, we drew the conclusion that extruded coal crack evolution is a process of fractal dimension value increase. On the basis of fractal dimension values taken from different parts of coal masses, a fractal dimension of the contour map was drawn. Thus, it is clear that the contour map involves different crack fractal dimension values from different positions. To be specific, where there are complicated force and violent movement in coal mass, there are higher fractal dimension values, i.e., the further the middle of observation surface is from the exit of coal mass, and the lower the fractal dimension value is. In line with fractal geometry and energy theory of coal and gas outburst, this study presents the relation between fractal dimension and energy in the process of extruding. In conclusion, the evolution of crack fractal dimension value can signify that of energy, which has laid a solid foundation for the quantification research on the mechanism of gas-containing coal extrusion.展开更多
Hot cracking susceptibility of fillers 52 and 82 in 800H and 825 nickel-base superalloys was discussed using the Spot Varestraint test.The fillers of 52 and 82 were added into nickel-base superalloys via a gas tungste...Hot cracking susceptibility of fillers 52 and 82 in 800H and 825 nickel-base superalloys was discussed using the Spot Varestraint test.The fillers of 52 and 82 were added into nickel-base superalloys via a gas tungsten arc welding(GTAW).Experimental results showed that the hot cracking sensitivity of the nickel-base superalloys with filler at high temperature was lower than that without filler.The hot cracking sensitivity had a slight effect when the filler 82 was added.The total length of crack was increased,the liquid-solid(L-S)two-phase range is higher so that the hot cracking susceptibility will be raised.The morphologies of cracks included the intergranular crack in the molten pool,molten pool of solidification cracking,heat-affected zone of intergranular cracks,and transgranular crack in the heat-affected zone.展开更多
Western Desert represents a major oil and gas province in Egypt producing more than 50%of the country’s oil production.Oil and gas blend occurs in most producing fields,however,the genetic link between gas and liquid...Western Desert represents a major oil and gas province in Egypt producing more than 50%of the country’s oil production.Oil and gas blend occurs in most producing fields,however,the genetic link between gas and liquid hydrocarbon phases are not well-constrained.Obayied sub-basin in the Western Desert where oil and gas phases coexist in the Middle Jurassic sandstones of the Khatatba Formation provides an ideal place to investigate the link between oil and gas generation.Geochemical analyses on rock samples(Rock–Eval pyrolysis,vitrinite reflectance,R_(o))and gases(molecular and isotopic composition)were conducted in order to identify the genetic characteristics of the hydrocarbon phases produced.Maturity-relevant parameters(Rock–Eval T_(max),vitrinite reflectance R_(o))elucidate that only Middle Jurassic Khatatba organofacies capable of generating wet and dry hydrocarbon gases.Additionally,the enrichment of C_(7)normal alkanes,mono-branched alkanes relative to polybranched components in the Obayied gases reflect their generation via cracking of oil.Basin modelling results confirm gas generation through both primary and secondary cracking.However,secondary cracking of liquid hydrocarbon phases is volumetrically more significant.Primary cracking of the Khatatba organofacies likely predate and catalyze the secondary cracking of the liquid phases and therefore the volume of generated gas increases incrementally eastward where both processes coexist.The present study highlights the significant role of secondary cracking in the generation and accumulation of huge gas accumulations in the basins containing oil-prone source intervals.展开更多
In order to study the hypotonic and rheological particularity of “three soft” coal seam in west Henan, China, this paper explored the stress and damage characteristics of crack in coal under condition of water injec...In order to study the hypotonic and rheological particularity of “three soft” coal seam in west Henan, China, this paper explored the stress and damage characteristics of crack in coal under condition of water injection fracturing based on ABAQUS platform;The cohesive element in T-P damage evolution criterion was used to describe the approximately linear relationship between crack width and extending distance in soft coal. The simulation results show that stress evolution and crack damage in soft coal is a gradually developing process under condition of water injection fracturing. When the static pressure is 4 - 10 MPa, and the injection time is about 1 - 2 hours, the damage range of crack in soft coal can basically reach an ideal data of 80 - 100 m, and then greatly improve the hypotonic performance of “three soft” coal seam.展开更多
To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, Chin...To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, China, the main strike-slip faults in and around well FD1 in the basin were analyzed in terms of sedimentary facies, sequence stratigraphy, intraplatform shoal reservoir property, and oil and gas origins, based on drilling data. The Yingshan Formation intraplatform shoal between the main strike-slip faults is superimposed with low-order faults to form a new type of hydrocarbon play. Firstly, hydrocarbons generated from the Lower Cambrian Yuertusi Formation source rocks vertically migrated into the second member of Yingshan Formation through the main strike-slip faults, and then migrated laterally until they were accumulated. A small amount of oil from Well FD1 came from the Yuertusi Formation source rocks in the mature stage, and a large amount of gas originated from oil cracking in the ultra-deep reservoirs. Therefore, the secondary gas condensate reservoir in Well FD1 is characterized by high gas to oil ratio, dry gas (dryness coefficient being 0.970) and hybrid origin. This new type of hydrocarbon play characterized by intraplatform shoal and low-order fault suggests a prospect of continuous hydrocarbon-bearing area in Fuman Oilfield, which will expand the ultrap-deep oil and gas exploration in the oilfield.展开更多
The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the ove...The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the overlying strata.A large amount of gypsum infills the bedrock weathered crust,and this has changed the pore structure.Using core observation,polarized light microscopy,electron probe,physical property analysis and field emission scanning electron microscopy experiments,the characteristics of the weathered bedrock have been studied.There are cracks and a small number of dissolved pores in the interior of the weathered crust.Matrix micropores are widely developed,especially the various matrix cracks formed by tectonics and weathering,as well as the stress characteristics of small dissolved pores,and physical properties such as porosity and permeability.This‘dual structure’developed in the bedrock is important for guiding the exploration of the lake basin bedrock for natural gas.展开更多
In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components ...In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components and their contents on sulfur transfer agent were investigated. Moreover, the crystalline structure of sulfur transfer agent was characterized by X-ray diffraction(XRD) and Fourier transforms infrared spectroscopy(FT-IR). The result showed that the Zr-Mn sulfur transfer agent could effectively reduce the SO2 content in FCC regenerator flue gas, featuring high SO2 adsorption capacity. The sulfur transfer agent was inactivated in 40—60 min during the test. In the course of reduction reaction, after several reaction cycles, the formation of SO2 ceased and only H2 S was detected as the reduction product.展开更多
Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel ca...Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel capability. VGOs were cracked in fixed- and/or fluid-bed microactivity test (MAT) units, in an Advanced Cracking Evaluation (ACE) unit, and in a modified ARCO riser reactor. Individual yields of gas, liquid, and coke from the MATs at 55, 65, 70, and 81 wt% conversion levels were compared with their respective pilot plant data. Good linear correlations could be established between MAT and riser yields except for liquefied petroleum gas (LPG) and light cycle oil (LCO). At a given conversion, correlations existed among the fixed- and fluid-bed MAT units and the ACE for each product yield. Liquid products from the fixed or fluid-bed MAT were analyzed for hydrocarbon types, sulfur, nitrogen and density, most of which showed good agreement with those obtained from the riser study. When cracking Canadian oil-sands-derived VGOs, the bottoms-cracking catalyst containing a large-pore active matrix was found to be more suitable than the octane-barrel catalyst with smaller pores to produce higher yields of valuable distillates, but with less superior qualities (in terms of sulfur and nitrogen contents). The advantages of hydrotreating some poor feeds to improve product yields and qualities were demonstrated and discussed.展开更多
It is well established that hydrogen has the potential to make a significant contribution to the world energy production.In U.S.,majority of hydrogen production plants implement steam methane reforming(SMR) for centra...It is well established that hydrogen has the potential to make a significant contribution to the world energy production.In U.S.,majority of hydrogen production plants implement steam methane reforming(SMR) for centralized hydrogen production.However,there is a wide lack of agreement on the nascent stage of using hydrogen as fuel in vehicles industry because of the difficulty in delivery and storage.By performing technological and economic analysis,this work aims to establish the most feasible hydrogen production pathway for automotives in near future.From the evaluation,processes such as thermal cracking of ammonia and centralized hydrogen production followed by bulk delivery are eliminated while on-site steam reforming of methanol and natural gas are the most technologically feasible options.These two processes are further evaluated by comprehensive economic analysis.The results showed that the steam reforming(SR) of natural gas has a shorter payback time and a higher return on investment(ROI) and internal rate of return(IRR).Sensitivity analysis has also been constructed to evaluate the impact of variables like NG feedstock price,capital of investment and operating capacity factor on the overall production cost of hydrogen.Based on this study,natural gas is prompted to be the most economically and technologically available raw material for short-term hydrogen production before the transition to renewable energy source such as solar energy,biomass and wind power.展开更多
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金This study is supported by the National Natural Science Foundation of China(Grants 41730424,41961144023 and 42002162)。
文摘The natural cracking of crude oils in deep reservoirs has gained great interest due to continuously increasing depth of petroleum exploration and exploitation.Complex oil compositions and surroundings as well as complicated geological evolutions make oil cracking in nature much more complex than industrial pyrolysis.So far,numerous studies,focused on this topic,have made considerable progress although there still exist some drawbacks.However,a comprehensive review on crude oil cracking is yet to be conducted.This article systematically reviews the controlling factors of oil cracking from six aspects,namely,oil compositions,temperature and time,pressure,water,minerals and solid organic matter.We compare previous experimental and modelling results and present new field cases.In the following,we evaluate the prevailing estimation methods for the extent of oil cracking,and elucidate other factors that may interfere with the application of these estimation methods.This review will be helpful for further investigations of crude oil cracking and provides a guide for estimation of the cracking extent of crude oils.
文摘The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further studied.On the pre-weld heat-treated samples,upon solving the secondaryγ′particles in the matrix,primaryγ′particles in the base metal grew to"ogdoadically diced cubes"of about 2μm in side lengths.The pre-weld heat treatment reduced the hardness of the base metal to about HV 310.Microstructural studies using optical and fieldemission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ.The constitutional melting of the secondary,eutectic,and Zr-rich phases promoted the liquation cracking in the HAZ.The microstructure of the weld fusion zones showed the presence of fine spheroidalγ′particles with sizes of about 0.2μm after the post-weld heat treatment,which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals,respectively.Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.
基金Supported by the National iqatural Science Foundation of China (20925623, U1162205).
文摘The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure and initial gas-liquid ratio on the hydrate formation was studied, respectively. The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatur.es from 274.15 to 277.15 K. The results showed that hydrogen and methane can be separated Irom the (~2+ ti'action by tOrming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method, and the hydrate formation rate can be enhanced in the wa- ter-in-oil emulsion compared to pure water. The experiments provided the basic data for designing the industrial process, and setting the suitable operational conditions. The measured data ot gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.
基金financially supported by the National Natural Science Foundation of China(No.52175352)the Xing Liao Ying Cai Project of Liaoning Province(No.XLYC2008036)the Shenyang Youth Innovation Talent Support Program(No.RC220429)。
文摘The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.
基金Financial supported from National Natural Foundation of China (20590361 and 20303026) and State Key FoundationProgram for Development and Research of China (2005cb221402).
文摘Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds, a small amount of oxygenates including H2O, CH3OH, DME and CO2 as well as a few of low carbon alkanes were found in the SGMC. After purification, the sulfur compounds, H2O, CH3OH and DME could be eliminated efficiently from the SGMC while CO2 and the low carbon alkanes were partly removed. When the unpurified SGMC, the desufurized SGMC and the totally purified SGMC were sequentially applied in cobalt-based FTS, the catalytic performance of Co/ZrO2/SiO2 catalyst was gradually improved corresponding to the degree of purification. The untreated SGMC led to the serious deactivation of the cobalt catalyst, the partially treated SGMC slowed down the deactivation rate and the totally purified SGMC resulted in little deactivation of the catalyst, which was similar to what the pure synthesis gas (the mixture of pure H2 and CO) did. The results indicated that the SGMC should be purified and the purification course used in this paper was effective for the SGMC. Furthermore, the totally purified SGMC could substitute for the pure synthesis gas in cobalt FTS.
文摘The influence of operating parameters on ethylene content in dry gas obtained during catalytic cracking of gasoline was investigated in a pilot fixed fluidized bed reactor in the presence of the MMC-2 catalyst. The results have shown that the majority of dry gas was formed during the catalytic cracking reaction of gasoline, with a small proportion of dry gas being formed through the thermal cracking reaction of gasoline. The ethylene content in dry gas formed during the catalytic cracking reaction was higher than that in dry gas formed during the thermal cracking reaction. The ethylene content in dry gas formed during catalytic cracking of gasoline with a higher olefin content was higher than that in dry gas formed during catalytic cracking of gasoline with a lower olefin content, which meant that the higher the amount of carbonium ions was produced during the reaction, the higher the ethylene content in the dry gas would be. An increasing reaction temperature could increase the percentage of dry gas formed during thermal cracking reaction in total dry gas products, leading to decreased ethylene content in the dry gas. An increasing catalyst/oil ratio could be conducive to the catalytic cracking reactions taking place inside the zeolite Y, leading to a decreased ethylene content in the dry gas. A decreasing space velocity could be conducive to the catalytic cracking reactions taking place inside the shape-selective zeolite, leading to increased ethylene content in the dry gas.
文摘This paper presents experimental results of cocracking of straight-run gasoline (SRG) and light gaS oil (LGO) in an improved pulsed-micro-pyrolyzer. It is shown that there are negative opergistic effect on the yields and selectivities of ethylene and propylene in cocracking. The difference in coking tendencies betWeen the cocracking and the separate cracking is compared as well.
基金supported by the State Key Basic Research Program of China(No.2011CB201201)the National Natural Science Foundation of China(Nos.11172318 and 51134018)the Program of International S&T Cooperation of China(No.2010DFA64560)
文摘The exploitation of coal bed methane or coal gas is one of the most effective solutions of the problem of coal gas hazard.A better understanding of gas flow in mining-induced cracks plays an important role in comprehensive development and utilization of coal gas as well as prevention of coal gas hazard.This paper presents a case study of gas flow in mining-induced crack network regarding the situation of low permeability of coal seam.A two-dimensional physical model is constructed on the basis of geological background of mining face No.1122(1) in coal seam No.11-2,Zhangji Coal Mine,Huainan Mining Group Corporation.The mining-induced stress and cracks in overburden rocks are obtained by simulating an extraction in physical model.An evolution of mining-induced cracks in the process of advancing of coal mining face is characterized and three typical crack networks are taken from digital photos by means of image analysis.Moreover,the numerical software named COMSOL Multiphysics is employed to simulate the process of gas flow in three representative crack networks.Isograms of gas pressure at various times in mining-induced crack networks are plotted,suggesting a shape and dimension of gas accumulation area.
基金supported by the technology development fund of China Petroleum & Chemical Corporation (Sinopec 409045)
文摘An accurate and complete geometric model was constructed to simulate the combustion, flow and temperature environment in the radiant section of the steam cracking furnace. Simulation of flow and radiation status has utilized the standard k-ε model and P1 model. The finite-rate/eddy-dissipation (finite-rate/ED) combustion model and non-premixed combustion model were both used to simulate accurately the combustion and the operation status of the steam cracking furnace. Three different surfaces of the steam cracking furnace were obtained from the simulation, namely:the flue gas temperature field of the entrance surface in long flame burners, the central surface location of tubes, and the crossover section surface. Detailed information on the flue gas temperature and the mass concentration fraction of these different surfaces in the steam cracking furnace can also be obtained by the simulation. This paper analyzed and compared the simulation results with the two combustion models, estimated the operation status of the steam cracking furnace, and reported that the finite-rate/ED model is appropriate to simulate the steam cracking furnace by comparing key simulation data with actual test data. This work has also provided a theoretical basis for simulating and operating the steam cracking furnace.
基金the National Natural Science Foundation of China (Nos. 50904067 and 51104156)the New Century Excellent Talents in University (No. NCET-10-0768) for their support of this project
文摘In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camera and then the images were processed by sketch. Based on the above description, the paper studied the fractal dimension values from different positions of coal surface as well as their changing laws with time. The results show that there is a growing parabola trend of crack dimension value in the process of coal extrusion. Accordingly, we drew the conclusion that extruded coal crack evolution is a process of fractal dimension value increase. On the basis of fractal dimension values taken from different parts of coal masses, a fractal dimension of the contour map was drawn. Thus, it is clear that the contour map involves different crack fractal dimension values from different positions. To be specific, where there are complicated force and violent movement in coal mass, there are higher fractal dimension values, i.e., the further the middle of observation surface is from the exit of coal mass, and the lower the fractal dimension value is. In line with fractal geometry and energy theory of coal and gas outburst, this study presents the relation between fractal dimension and energy in the process of extruding. In conclusion, the evolution of crack fractal dimension value can signify that of energy, which has laid a solid foundation for the quantification research on the mechanism of gas-containing coal extrusion.
基金The authors are obligated to thank the Ministry and Science and Technology(MOST)of the Taiwan,R.O.C.for the financial support under the projects numbered MOST 103-2218-E-005-002.
文摘Hot cracking susceptibility of fillers 52 and 82 in 800H and 825 nickel-base superalloys was discussed using the Spot Varestraint test.The fillers of 52 and 82 were added into nickel-base superalloys via a gas tungsten arc welding(GTAW).Experimental results showed that the hot cracking sensitivity of the nickel-base superalloys with filler at high temperature was lower than that without filler.The hot cracking sensitivity had a slight effect when the filler 82 was added.The total length of crack was increased,the liquid-solid(L-S)two-phase range is higher so that the hot cracking susceptibility will be raised.The morphologies of cracks included the intergranular crack in the molten pool,molten pool of solidification cracking,heat-affected zone of intergranular cracks,and transgranular crack in the heat-affected zone.
文摘Western Desert represents a major oil and gas province in Egypt producing more than 50%of the country’s oil production.Oil and gas blend occurs in most producing fields,however,the genetic link between gas and liquid hydrocarbon phases are not well-constrained.Obayied sub-basin in the Western Desert where oil and gas phases coexist in the Middle Jurassic sandstones of the Khatatba Formation provides an ideal place to investigate the link between oil and gas generation.Geochemical analyses on rock samples(Rock–Eval pyrolysis,vitrinite reflectance,R_(o))and gases(molecular and isotopic composition)were conducted in order to identify the genetic characteristics of the hydrocarbon phases produced.Maturity-relevant parameters(Rock–Eval T_(max),vitrinite reflectance R_(o))elucidate that only Middle Jurassic Khatatba organofacies capable of generating wet and dry hydrocarbon gases.Additionally,the enrichment of C_(7)normal alkanes,mono-branched alkanes relative to polybranched components in the Obayied gases reflect their generation via cracking of oil.Basin modelling results confirm gas generation through both primary and secondary cracking.However,secondary cracking of liquid hydrocarbon phases is volumetrically more significant.Primary cracking of the Khatatba organofacies likely predate and catalyze the secondary cracking of the liquid phases and therefore the volume of generated gas increases incrementally eastward where both processes coexist.The present study highlights the significant role of secondary cracking in the generation and accumulation of huge gas accumulations in the basins containing oil-prone source intervals.
文摘In order to study the hypotonic and rheological particularity of “three soft” coal seam in west Henan, China, this paper explored the stress and damage characteristics of crack in coal under condition of water injection fracturing based on ABAQUS platform;The cohesive element in T-P damage evolution criterion was used to describe the approximately linear relationship between crack width and extending distance in soft coal. The simulation results show that stress evolution and crack damage in soft coal is a gradually developing process under condition of water injection fracturing. When the static pressure is 4 - 10 MPa, and the injection time is about 1 - 2 hours, the damage range of crack in soft coal can basically reach an ideal data of 80 - 100 m, and then greatly improve the hypotonic performance of “three soft” coal seam.
基金Supported by the National Natural Science Foundation of China(42230816)PetroChina Science and Technology Project(2021DJ1501)Tarim Oilfield Technology Project(T202112).
文摘To understand the reservoir property and hydrocarbon accumulation conditions of the Middle and Upper Ordovician intraplatform shoal between ultra-deep main strike-slip faults in Fuman Oilfield of the Tarim Basin, China, the main strike-slip faults in and around well FD1 in the basin were analyzed in terms of sedimentary facies, sequence stratigraphy, intraplatform shoal reservoir property, and oil and gas origins, based on drilling data. The Yingshan Formation intraplatform shoal between the main strike-slip faults is superimposed with low-order faults to form a new type of hydrocarbon play. Firstly, hydrocarbons generated from the Lower Cambrian Yuertusi Formation source rocks vertically migrated into the second member of Yingshan Formation through the main strike-slip faults, and then migrated laterally until they were accumulated. A small amount of oil from Well FD1 came from the Yuertusi Formation source rocks in the mature stage, and a large amount of gas originated from oil cracking in the ultra-deep reservoirs. Therefore, the secondary gas condensate reservoir in Well FD1 is characterized by high gas to oil ratio, dry gas (dryness coefficient being 0.970) and hybrid origin. This new type of hydrocarbon play characterized by intraplatform shoal and low-order fault suggests a prospect of continuous hydrocarbon-bearing area in Fuman Oilfield, which will expand the ultrap-deep oil and gas exploration in the oilfield.
基金the National Major Project of Science and Technology in developing great oil&gas field and coal bed gas(Grant No.2016ZX05007-006)the Study on water-cut control and production stabilization in the old gasfields and efficient development in new gasfields in Qaidam Basin(Grant No.2016E-0106GF)。
文摘The bedrock weathered crust in front of the Altun Mountains in the Qaidam Basin,western China,is different from others because this is a salt-lake basin,where saline water fluid infiltrates and is deposited in the overlying strata.A large amount of gypsum infills the bedrock weathered crust,and this has changed the pore structure.Using core observation,polarized light microscopy,electron probe,physical property analysis and field emission scanning electron microscopy experiments,the characteristics of the weathered bedrock have been studied.There are cracks and a small number of dissolved pores in the interior of the weathered crust.Matrix micropores are widely developed,especially the various matrix cracks formed by tectonics and weathering,as well as the stress characteristics of small dissolved pores,and physical properties such as porosity and permeability.This‘dual structure’developed in the bedrock is important for guiding the exploration of the lake basin bedrock for natural gas.
基金supported by the research fund of the National Natural Science Foundation of China (21306162)the National Basic Research Program "973" Project of China (2010CB226903)Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201309)
文摘In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components and their contents on sulfur transfer agent were investigated. Moreover, the crystalline structure of sulfur transfer agent was characterized by X-ray diffraction(XRD) and Fourier transforms infrared spectroscopy(FT-IR). The result showed that the Zr-Mn sulfur transfer agent could effectively reduce the SO2 content in FCC regenerator flue gas, featuring high SO2 adsorption capacity. The sulfur transfer agent was inactivated in 40—60 min during the test. In the course of reduction reaction, after several reaction cycles, the formation of SO2 ceased and only H2 S was detected as the reduction product.
文摘Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel capability. VGOs were cracked in fixed- and/or fluid-bed microactivity test (MAT) units, in an Advanced Cracking Evaluation (ACE) unit, and in a modified ARCO riser reactor. Individual yields of gas, liquid, and coke from the MATs at 55, 65, 70, and 81 wt% conversion levels were compared with their respective pilot plant data. Good linear correlations could be established between MAT and riser yields except for liquefied petroleum gas (LPG) and light cycle oil (LCO). At a given conversion, correlations existed among the fixed- and fluid-bed MAT units and the ACE for each product yield. Liquid products from the fixed or fluid-bed MAT were analyzed for hydrocarbon types, sulfur, nitrogen and density, most of which showed good agreement with those obtained from the riser study. When cracking Canadian oil-sands-derived VGOs, the bottoms-cracking catalyst containing a large-pore active matrix was found to be more suitable than the octane-barrel catalyst with smaller pores to produce higher yields of valuable distillates, but with less superior qualities (in terms of sulfur and nitrogen contents). The advantages of hydrotreating some poor feeds to improve product yields and qualities were demonstrated and discussed.
基金support from the Hong Kong University of Science and Technology via the Undergraduate Research Opportunity Program (UROP)Lighten R&D Consultancy Ltd for providing advices
文摘It is well established that hydrogen has the potential to make a significant contribution to the world energy production.In U.S.,majority of hydrogen production plants implement steam methane reforming(SMR) for centralized hydrogen production.However,there is a wide lack of agreement on the nascent stage of using hydrogen as fuel in vehicles industry because of the difficulty in delivery and storage.By performing technological and economic analysis,this work aims to establish the most feasible hydrogen production pathway for automotives in near future.From the evaluation,processes such as thermal cracking of ammonia and centralized hydrogen production followed by bulk delivery are eliminated while on-site steam reforming of methanol and natural gas are the most technologically feasible options.These two processes are further evaluated by comprehensive economic analysis.The results showed that the steam reforming(SR) of natural gas has a shorter payback time and a higher return on investment(ROI) and internal rate of return(IRR).Sensitivity analysis has also been constructed to evaluate the impact of variables like NG feedstock price,capital of investment and operating capacity factor on the overall production cost of hydrogen.Based on this study,natural gas is prompted to be the most economically and technologically available raw material for short-term hydrogen production before the transition to renewable energy source such as solar energy,biomass and wind power.