期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimisation Method for Determination of Crack Tip Position Based on Gauss-Newton Iterative Technique 被引量:1
1
作者 Bing Yang Zhanjiang Wei +5 位作者 Zhen Liao Shuwei Zhou Shoune Xiao Tao Zhu Guangwu Yang Mingmeng Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期196-207,共12页
In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life predic... In the digital image correlation research of fatigue crack growth rate,the accuracy of the crack tip position determines the accuracy of the calculation of the stress intensity factor,thereby affecting the life prediction.This paper proposes a Gauss-Newton iteration method for solving the crack tip position.The conventional linear fitting method provides an iterative initial solution for this method,and the preconditioned conjugate gradient method is used to solve the ill-conditioned matrix.A noise-added artificial displacement field is used to verify the feasibility of the method,which shows that all parameters can be solved with satisfactory results.The actual stress intensity factor solution case shows that the stress intensity factor value obtained by the method in this paper is very close to the finite element result,and the relative error between the two is only−0.621%;The Williams coefficient obtained by this method can also better define the contour of the plastic zone at the crack tip,and the maximum relative error with the test plastic zone area is−11.29%.The relative error between the contour of the plastic zone defined by the conventional method and the area of the experimental plastic zone reached a maximum of 26.05%.The crack tip coordinates,stress intensity factors,and plastic zone contour changes in the loading and unloading phases are explored.The results show that the crack tip change during the loading process is faster than the change during the unloading process;the stress intensity factor during the unloading process under the same load condition is larger than that during the loading process;under the same load,the theoretical plastic zone during the unloading process is higher than that during the loading process. 展开更多
关键词 Crack tip location Crack tip plastic zone Stress intensity factor Gauss-Newton iterative method Digital image correlation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部