The threshold stress, σc, for sulfide stress corrosion cracking (SCC) of seven pipeline steels and five other steels, the critical stress, Sc, for seven pipeline steels and two drill rod steels with various strengths...The threshold stress, σc, for sulfide stress corrosion cracking (SCC) of seven pipeline steels and five other steels, the critical stress, Sc, for seven pipeline steels and two drill rod steels with various strengths and the susceptibility to SCC, IRA or σf(SCC)/σf, for four pipeline steels, two drill rod steels and five other steels were measured. The results showed that there are no definite relationships among σc, Sc and IRA or σf(SCC)/σf.The threshold stress for hydrogen induced cracking (HlC) during charging with loading in the H2S04 solution, σc(H), decreased linearly with logarithm of the concentration of diffusible hydrogen c0, i.e., σc(H)=A-B Inco for four pipeline steels. σc(H) obtained with a special cathodic current ic, which was corresponding to the diffusible hydrogen concentration during immersing in the H2S solution, were consistent with /c for sulfide SCC for four pipeline steels. Therefore, σc for sulfide SCC can be measured using dynamically charging in the H2SO4 solution with the special cathodic current ic.展开更多
Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship ...Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.展开更多
A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate con...A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate constant formula is derived from the transition state theory and the coking amount is correlated to the properties of the intermediate substance [i,m].In composing the cracking reaction network for feedstock and product oils,only the product PC m of the proposed generic reaction is used,which together with a criterion for excluding exothermic reactions,distinctly reduces the number of reactions in the network.With the proposed cracking reaction scheme coupled with special pseudo-components,a predictive one-dimensional steady state model for fluid catalytic cracking risers is formulated in the sense that for a given riser and given catalyst,the model parameters are independent of stock oils,product schemes and other operational conditions.The great correlating and predicting capability of the resulted model is tested with production data in different scenarios of four commercial risers.展开更多
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalesce...Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.展开更多
HoekeBrown failure criterion is one of the widely used rock strength criteria in rock mechanics and mining engineering.Based on the theoretical expression of HoekeBrown parameter m of an intact rock,the parameter m ha...HoekeBrown failure criterion is one of the widely used rock strength criteria in rock mechanics and mining engineering.Based on the theoretical expression of HoekeBrown parameter m of an intact rock,the parameter m has been modified by crack parameters for fractured rocks.In this paper,the theoretical value range and theoretical expression form of the parameter m in HoekeBrown failure criterion were discussed.A critical crack parameter B was defined to describe the influence of the critical crack when the stress was at the peak,while a parameter b was introduced to represent the distribution of the average initial fractures.The parameter m of a fractured rock contained the influences of critical crack(B),confining pressure(s3)and initial fractures(b).Then the triaxial test on naturally fractured limestones was conducted to verify the modification of the parameter m.From the ultrasonic test and loading test results of limestones,the parameter m can be obtained,which indicated that the confining pressure at a high level reduced the differences of m among all the specimens.The confining pressure s3 had an exponential impact on m,while the critical crack parameter B had a negative correlation with m.Then the expression of m for a naturally fractured limestone was also proposed.展开更多
The J-integral as a controlling parameter was applied to the crack growing process in an elastic-plastic state by Hutchinson and Paris[1], and Shih et. al[2]. An engineering approach based on J-integral was proposed b...The J-integral as a controlling parameter was applied to the crack growing process in an elastic-plastic state by Hutchinson and Paris[1], and Shih et. al[2]. An engineering approach based on J-integral was proposed by Ref.[3]. Obviously, it is necessary to determine whether J is really a bask controlling parameter. It has been shown from the results given in this paper that it is not bask, but the Jn-integral defined in this paper is a proper controlling parameter for crack growth in an clastic-plastic state.展开更多
Cracks,potholes,and other defects often occur on infrastructure such as bridges,among which cracks are one of the most frequent defects.They have diverse shapes and are difficult to detect.Traditional manual inspectio...Cracks,potholes,and other defects often occur on infrastructure such as bridges,among which cracks are one of the most frequent defects.They have diverse shapes and are difficult to detect.Traditional manual inspection methods are inefficient and have low accuracy,while automated inspection machines are bulky and inconvenient to carry and use.Based on the shortcomings of existing detection technologies,this paper proposes a portable structural surface crack detection system based on the Android platform using a portable hand-held image acquisition device.The system captures cracks on the structure's surface and obtains high-definition crack images.Then,these images are transmitted to portable smartphone terminals through Wi-Fi.Next,the image is pre-processed using weighted averaging,grayscale linear transformation,and adaptive median filtering.Then,the improved Canny edge detection algorithm is applied to identify crack information,and the edge segmentation algorithm is used to determine the crack width.Finally,based on camera calibration,the pixels are converted into the length data required for actual measurement.The results show that the system is easy to operate,and it not only has crack storage and tracking functions,but also can effectively measure the crack width on the surface of components.The measurement accuracy of this system reaches the sub-pixel level,and in actual testing,compared with the crack width gauge,the maximum relative error does notexceed6.25%.展开更多
The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the h...The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating.展开更多
In this paper,the problem of modeling crack in 2D viscoelastic media is studied using the extended finite element method.The paper focuses on the definition of enrichment functions suitable for cracks assessment in vi...In this paper,the problem of modeling crack in 2D viscoelastic media is studied using the extended finite element method.The paper focuses on the definition of enrichment functions suitable for cracks assessment in viscoelastic media and the generalized domain integrals used in the determination of crack tip parameters.The opening mode and mixed mode solutions of crack tip fracture problems in viscoelastic media are also undertaken.The results obtained by the proposed method show good agreement with the analytical methods and provide reasonable background information to enhance the modeling of crack growth in viscoelastic media.展开更多
基金This project was supported by the NNSFC of China! (No.19891180, 59725104, 59895150) the Corporation of iron and Steel Baosha
文摘The threshold stress, σc, for sulfide stress corrosion cracking (SCC) of seven pipeline steels and five other steels, the critical stress, Sc, for seven pipeline steels and two drill rod steels with various strengths and the susceptibility to SCC, IRA or σf(SCC)/σf, for four pipeline steels, two drill rod steels and five other steels were measured. The results showed that there are no definite relationships among σc, Sc and IRA or σf(SCC)/σf.The threshold stress for hydrogen induced cracking (HlC) during charging with loading in the H2S04 solution, σc(H), decreased linearly with logarithm of the concentration of diffusible hydrogen c0, i.e., σc(H)=A-B Inco for four pipeline steels. σc(H) obtained with a special cathodic current ic, which was corresponding to the diffusible hydrogen concentration during immersing in the H2S solution, were consistent with /c for sulfide SCC for four pipeline steels. Therefore, σc for sulfide SCC can be measured using dynamically charging in the H2SO4 solution with the special cathodic current ic.
基金supported by the Young Scientist Project of National Key Research and Development Program of China(2021YFC2900600)National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38).
文摘Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering.
基金Supported by the National Natural Science Foundation of China(21676012)the Fundamental Research Funds for the Central Universities(Project YS1404)the National High Technology Research and Development Program of China(2007AA04Z191)
文摘A new generic reaction in the form of PC_i→PC_m+[i,m]→PC_m+λi,m coke+surplusage has been proposed for describing the catalytic cracking behavior of petroleum narrow cuts or pseudo-components(PCs),where the rate constant formula is derived from the transition state theory and the coking amount is correlated to the properties of the intermediate substance [i,m].In composing the cracking reaction network for feedstock and product oils,only the product PC m of the proposed generic reaction is used,which together with a criterion for excluding exothermic reactions,distinctly reduces the number of reactions in the network.With the proposed cracking reaction scheme coupled with special pseudo-components,a predictive one-dimensional steady state model for fluid catalytic cracking risers is formulated in the sense that for a given riser and given catalyst,the model parameters are independent of stock oils,product schemes and other operational conditions.The great correlating and predicting capability of the resulted model is tested with production data in different scenarios of four commercial risers.
基金supported by the National Natural Science Foundation of China (Grant 51179189)the National Basic Research 973 Program of China (Grant 2013CB036003)+2 种基金the Program for New Century Excellent Talents in University (Grant NCET-120961)Outstanding Innovation Team Project in China University of Mining and Technology (Grant 2014QN002)the Fundamental Research Funds for the Central Universities (Grants 2014YC10 and 2014XT03)
文摘Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.
基金financial support from Beijing Outstanding Young Scientist Program,China(Grant No.BJJWZYJH01201911413037)the National Natural Science Foundation of China(Grant No.41877257)Shaanxi Coal Group Key Project,China(Grant No.2018SMHKJ-A-J-03)。
文摘HoekeBrown failure criterion is one of the widely used rock strength criteria in rock mechanics and mining engineering.Based on the theoretical expression of HoekeBrown parameter m of an intact rock,the parameter m has been modified by crack parameters for fractured rocks.In this paper,the theoretical value range and theoretical expression form of the parameter m in HoekeBrown failure criterion were discussed.A critical crack parameter B was defined to describe the influence of the critical crack when the stress was at the peak,while a parameter b was introduced to represent the distribution of the average initial fractures.The parameter m of a fractured rock contained the influences of critical crack(B),confining pressure(s3)and initial fractures(b).Then the triaxial test on naturally fractured limestones was conducted to verify the modification of the parameter m.From the ultrasonic test and loading test results of limestones,the parameter m can be obtained,which indicated that the confining pressure at a high level reduced the differences of m among all the specimens.The confining pressure s3 had an exponential impact on m,while the critical crack parameter B had a negative correlation with m.Then the expression of m for a naturally fractured limestone was also proposed.
文摘The J-integral as a controlling parameter was applied to the crack growing process in an elastic-plastic state by Hutchinson and Paris[1], and Shih et. al[2]. An engineering approach based on J-integral was proposed by Ref.[3]. Obviously, it is necessary to determine whether J is really a bask controlling parameter. It has been shown from the results given in this paper that it is not bask, but the Jn-integral defined in this paper is a proper controlling parameter for crack growth in an clastic-plastic state.
基金Supported by Shaanxi Provincial Key Research and Development Program(2024GX-YBXM-288)the National Natural Science Foundation of China(52172324)+1 种基金Beilin District Science and Technology Program(GX2350)the Special Fund Project for Basic Research Business Expenses of Central level Public Welfare Research Institutes(2023-9062)。
文摘Cracks,potholes,and other defects often occur on infrastructure such as bridges,among which cracks are one of the most frequent defects.They have diverse shapes and are difficult to detect.Traditional manual inspection methods are inefficient and have low accuracy,while automated inspection machines are bulky and inconvenient to carry and use.Based on the shortcomings of existing detection technologies,this paper proposes a portable structural surface crack detection system based on the Android platform using a portable hand-held image acquisition device.The system captures cracks on the structure's surface and obtains high-definition crack images.Then,these images are transmitted to portable smartphone terminals through Wi-Fi.Next,the image is pre-processed using weighted averaging,grayscale linear transformation,and adaptive median filtering.Then,the improved Canny edge detection algorithm is applied to identify crack information,and the edge segmentation algorithm is used to determine the crack width.Finally,based on camera calibration,the pixels are converted into the length data required for actual measurement.The results show that the system is easy to operate,and it not only has crack storage and tracking functions,but also can effectively measure the crack width on the surface of components.The measurement accuracy of this system reaches the sub-pixel level,and in actual testing,compared with the crack width gauge,the maximum relative error does notexceed6.25%.
基金supported by the National Natural Science Foundation of China(Grant Nos.51275185,51405171,U1564203)
文摘The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No 2007CB714104)
文摘In this paper,the problem of modeling crack in 2D viscoelastic media is studied using the extended finite element method.The paper focuses on the definition of enrichment functions suitable for cracks assessment in viscoelastic media and the generalized domain integrals used in the determination of crack tip parameters.The opening mode and mixed mode solutions of crack tip fracture problems in viscoelastic media are also undertaken.The results obtained by the proposed method show good agreement with the analytical methods and provide reasonable background information to enhance the modeling of crack growth in viscoelastic media.