As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura...As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.展开更多
Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack st...Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus(Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.展开更多
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro...The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed.展开更多
The rock mass rating(RMR)has been used across the geotechnical industry for half a century.In contrast,the coal mine roof rating(CMRR)was specifically introduced to underground coal mines two decades ago to link geolo...The rock mass rating(RMR)has been used across the geotechnical industry for half a century.In contrast,the coal mine roof rating(CMRR)was specifically introduced to underground coal mines two decades ago to link geological characterization with geotechnical risk mitigation.The premise of CMRR is that strength properties of mine roof rock are influenced by defects typical of coal measures stratigraphy.The CMRR has been used in longwall pillar design,roof support methods,and evaluation of extended cuts,but is rarely evaluated.Here,the RMR and CMRR are applied to a longwall coal mine.Roof rock mass classifications were undertaken at 67 locations across the mine.Both classifications showed marked spatial variability in terms of roof conditions.Normal and reverse faulting occur across the mine,and while no clear relationships exist between rock mass character and faulting,a central graben zone showed heterogeneous rock mass properties,and divergence between CMRR and RMR.Overall,the CMRR data fell within the broad envelope of results reported for extended cuts at Australian and U.S.coal mines.The corollary is that the CMRR is useful,and should not be used in isolation,but rather as a component of a strata control programme.展开更多
During the excavation of deep coal and rock mass, the radial stress of the free face changes from three-dimensional compression state to two-dimensional stress, bearing the combined action of dynamic disturbance and s...During the excavation of deep coal and rock mass, the radial stress of the free face changes from three-dimensional compression state to two-dimensional stress, bearing the combined action of dynamic disturbance and static load at the same time. With that, many mines suffer from dynamic disasters, such as coal and gas outburst, rock burst and rock caving during deep mining excavation, which is often accompanied by plate crack, spalling and other disasters, seriously affecting the stability of stope and roadway. Taking thin rectangular coal and rock mass as the research object, the dual equation of the free vibration was derived and the exact solution model of the free vibration was established with the use of Hamilton dual system. Based on the action characteristics of the uniform impact load, the effective mode of the forced vibration was obtained by using the Duhamel integral principle and the orthogonality of the mode function. Based on the third strength theory and the numerical simulation results, the dynamic damage process and development trend of coal and rock mass were analyzed under uniform impact load. It was concluded that the starting position of dynamic damage can be judged by the first order main mode, and the development direction and trend of the damage can be judged by the fifth and sixth order main modes. It was concluded that the vibration mode functions of coal and rock mass with four side fixed (C-C-C-C), the two sides fixed and simply supported on the other (S-C-S-C) are mainly composed of three modes that are the first order (dominant frequency), the fifth order and the sixth order, from which the dynamic damage mechanism is preliminarily studied.展开更多
For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test sta...For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.展开更多
The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influ...The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.展开更多
For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of inte...For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.展开更多
In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buri...In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buried sand and a paleo-weathered rock mass was investigated in the laboratory by direct shear testing. A DRS-1 high pressure soil shear testing machine and orthogonal design method were used in the direct shear tests. Variance and range methods were applied to analyze the sensitivity of each factor that has an influence on the mechanical characters of the interface. The test results show that the normal pressure is the main influencing factor for mechanical characteristics of the interface, while the lithological characters and roughness are minor factors; the shear stress against shear displacement curve for the interface shows an overall hyperbola relationship, no obvious peak stress and dilatancy was observed.When the normal pressure is 6 MPa, the shear strengths of interfaces with different roughness are basically the same, and when the normal pressure is more than 8 MPa, the larger the roughness of the interface, the larger will be the shear strength; the shear strength has a better linear relationship with the normal pressure, which can be described by a linear Mohr–Coulomb criterion.展开更多
Based on the natural characters of stratum, complicated geological mining conditions and the essence of mining rock mass destruction, the complexity of rock mass destruction caused by miningw as analyzed. The inner li...Based on the natural characters of stratum, complicated geological mining conditions and the essence of mining rock mass destruction, the complexity of rock mass destruction caused by miningw as analyzed. The inner link between rock mass destruction phenomena caused by mining and nonlinear science was revealed. There are numerous cracks in natural rock mass. The cracks’ distribution is irregular and is of statistical fractal structure. Self-organizational nonlinear evolution of the inner structure flaws leads to the rock mass destruction with external force. The evolution includes single fault’s fractal development, formation and evolution of fractal crack network and coordination of fractal crack network, etc. The law of fractal crack network’s evolution was introduced, at the same time, the coordination of fractal crack network was analyzed. Finally, based on coordination the principal equation of mining-caused subsidence of structural rock mass was established and its steady-state solution and unsteady-state solution were found.展开更多
Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditio...Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.展开更多
The stress hardening characteristics of the reinforced rock mass in uniaxial compression tests were revealed by means of the experimental study on mechanical characteristics of cracked rock mass reinforced by bolting ...The stress hardening characteristics of the reinforced rock mass in uniaxial compression tests were revealed by means of the experimental study on mechanical characteristics of cracked rock mass reinforced by bolting and grouting. And the load-beating mechanism of the reinforced rock mass was perfectly reflected by the experiment. The results can offer some useful advice for support design and stability analysis of deep drifts in unstable strata.展开更多
Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock...Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.展开更多
The authors applied the Secondary Ion Mass Spectrometry (SIMS) technique to the analysis of compositions and structures of vitrinites fusinites, fusinites bitumens and graptolites in the hydrocarbon source rocks with ...The authors applied the Secondary Ion Mass Spectrometry (SIMS) technique to the analysis of compositions and structures of vitrinites fusinites, fusinites bitumens and graptolites in the hydrocarbon source rocks with different maturities dscribed their SIMS spectral characteristics and found that different macerals have differnt spectra which, reflected the compositional and structural differences of macerals. Moreover, the change bod of parameter CH2+/CH3+ can be used for the evaluation of thermal evolution regularity of macerals in the hydrocarbon source rocks The study results show that the SIMS technique is a powerful means for microara analysis of macerals in coals and source rocks. It is certain that the study level of macerals can be raised by detailed study of SIMS results of SIMS results of macerals.展开更多
The purpose of this study was to develop a physico-mathematical model and technique for estimation of chemical bond stability depending on electric field intensity of an external point charge.A hypothesis for a possib...The purpose of this study was to develop a physico-mathematical model and technique for estimation of chemical bond stability depending on electric field intensity of an external point charge.A hypothesis for a possible physico-chemical mechanism of the formation of additional harmful gases in the rock destruction by blasting was proposed.The theoretical basis of the hypothesis is the method of theretical evaluation of bond energy depending on the distance to a point charge,the third Coulomb centre.The quantum-mechanical model for calculating the electronic terms of molecules makes it possible to solve problems associated with the determination of parameters of molecules under the action of various physical fields on the system under consideration.The model was approved for some diatomic molecules.The discrepancy between the experimental data and calculated data did not exceed 14%,which proves accuracy of the obtained results.The model can be used in the field of research into the causes of gas-dynamic phenomena in underground coal mines,in studies of the degree of stability of nanostructured components of coal under physical influences,and in the theoretical design of new compounds and structures in the field of nanomaterial science and nanotechnology.展开更多
The size distribution of fragmented rocks depends on not only the blasting standard but also the mechanical properties, joint system and crack density of rock mass. As, especially, the cracks in the rock mass are heav...The size distribution of fragmented rocks depends on not only the blasting standard but also the mechanical properties, joint system and crack density of rock mass. As, especially, the cracks in the rock mass are heavily developed at the limestone quarries in Japan, the joints and/or cracks in the rock mass have big impacts on the blasting effects such as the size of fragmented rocks. Therefore, if the joint system and/or crack density in the rock mass can be known and evaluated in quantity, the blasting operation can be done more effectively, efficiency and safety. However, the guideline for designing the appropriate blasting standard based on the rock mass condition such as mechanical properties, joint system and/or distribution of cracks, discontinuities, from the scientific point of view, has not been developed yet. Therefore, a series of blasting tests had been conducted in different mines and faces, geological conditions and blasting standards in order to know the impacts of each factor on the blasting effects. This paper summarizes the results of blasting tests and describes the impacts of rock mass conditions and blasting standard on the size of fragmented rocks.展开更多
According to the rock burst features occurred in the coal mass of roadway rib in one mine,the mechanics model of coal mass and roof structure system along the edge of goaf was founded to analyze the stress of roof roc...According to the rock burst features occurred in the coal mass of roadway rib in one mine,the mechanics model of coal mass and roof structure system along the edge of goaf was founded to analyze the stress of roof rock layer,so the subside curve of roof rock layer was deduced.Furthermore,the stability of coal and rock system were analyzed,the critical load and critical resistance zone were used to judge the danger degree of rock burst occurrence.The influence of coal mass strength,brittleness degree,coal seam thickness,roof thickness,suspending length,equivalent shear module on the critical load, critical resistance zone was confirmed.So the rock burst occurrence conditions of coal mass in roadway rib mainly depend on mining depth,coal seam thickness and hard roof and floor,which are decided by the above studies,and successfully applied in prediction and prevention of rock burst in this mine.展开更多
In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/...In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/composition. The determined rock type is roughly similar to palynofacies of Combaz , whereas it is "rock maceral facies (for coal viz. coal facies)" in strictly speaking. Therefore, it is necessary to use the organic ingredients classification proposed by the authors so that it can be used for both maceral analysis and environment research . This source rock classification not only shows sedimentology and diagenetic changes but also acquires organic matter type even if hydrocarbon potential derived from maceral’s geochemical parameters. So, it is considered as genetic classification. The "rock maceral facies" may be transformed to sedimentary organic facies , which is used as quantitative evaluation means if research being perfect.Now, there are many models in terms of structure either for coal or for kerogen. In our opinion, whatever coal or kerogen ought be polymer, then we follow Combaz’s thought and study structure of amorphous kerogens which are accordance with genetic mechanism showing biochemical and geochemical process perfectly. Here, we use the time of flight secondary ion mass spectrometry (TOFSIMS) to expand Combaz’s models from three to five. They are also models for coal.展开更多
The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to hig...The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions.展开更多
Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong inter...Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong interaction among cracks is investigated using stress superposition principle and the Chebyshev polynomials expansion of the pseudo-traction. It is found from numerical results that crack nucleation, growth and coalescence lead to failure of deep crack- weakened rock masses. The stress redistribution around the surrounding rock mass induced by unloading excavation is studied. The effect of the excavation time on nucleation, growth, interaction and coalescence of cracks was analyzed. Moreover, the influence of the excavation time on the size and quantity of fractured zone and non-fractured zone was given. When the excavation time is short, zonal disintegration phenomenon may occur in deep rock masses. It is shown from numerical results that the size and quantity of fractured zone increase with decreasing excavation time, and the size and quantity of fractured zone increase with the increasing value of in-situ geostress.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42277165)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821)the National Overseas Study Fund(Grant No.202106410040).
文摘As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses.
基金supported by the State Key Basic Research Project of China(No.2011CB201201)the National Natural Science Foundation of China(Nos.51134018 and 11172318)the Key Technologies R&D Program of China(No.2008BAB36B07)
文摘Coal-rock as a typical sedimentary rock has obvious stratification,namely it has transversely isotropic feature.Meanwhile,deformation leads to coal-rock mass having the characteristics of different porous and crack structures as well as local anisotropy.Equivalent axial and circumferential strain' formulas of the pure coal-rock mass specimen with a single crack were derived through the establishment of equivalent mechanical model of standard cylindrical coal-rock specimen,and have been widely used to a variety of media combined different structures containing multiple cracks.The complete stress strain curve of a real coal-rock specimen was obtained by the CTC test.Additionally,according to the comparison with the theoretical value,the theoretical mechanical model could well explain the deformation characteristics of coal-rock mass and verify its validity.Further,following features were analyzed:strain normalized coefficient and elastic modulus(Poisson's ratio) in vertical and parallel direction to the stratification,stratification angle,porosity,pore radius,normal and tangential stiffness of crack,and the relationship of different crack width with different tangential stiffness of crack.Through the analysis above,it substantiate this claim that the theoretical model with better reliability reflects the transversely isotropic nature of the coal-rock and the local anisotropy caused by the porous and cracks.
基金the National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38)the Open Grant of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC20KF02).
文摘The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed.
基金Staff at Vale Australia,in particular Lachlan Cunningham and Priscilla Page,are thanked for facilitating underground access to the Carborough Downs Mine.The research was kindly supported by Moultrie Group and Golder Associates.
文摘The rock mass rating(RMR)has been used across the geotechnical industry for half a century.In contrast,the coal mine roof rating(CMRR)was specifically introduced to underground coal mines two decades ago to link geological characterization with geotechnical risk mitigation.The premise of CMRR is that strength properties of mine roof rock are influenced by defects typical of coal measures stratigraphy.The CMRR has been used in longwall pillar design,roof support methods,and evaluation of extended cuts,but is rarely evaluated.Here,the RMR and CMRR are applied to a longwall coal mine.Roof rock mass classifications were undertaken at 67 locations across the mine.Both classifications showed marked spatial variability in terms of roof conditions.Normal and reverse faulting occur across the mine,and while no clear relationships exist between rock mass character and faulting,a central graben zone showed heterogeneous rock mass properties,and divergence between CMRR and RMR.Overall,the CMRR data fell within the broad envelope of results reported for extended cuts at Australian and U.S.coal mines.The corollary is that the CMRR is useful,and should not be used in isolation,but rather as a component of a strata control programme.
文摘During the excavation of deep coal and rock mass, the radial stress of the free face changes from three-dimensional compression state to two-dimensional stress, bearing the combined action of dynamic disturbance and static load at the same time. With that, many mines suffer from dynamic disasters, such as coal and gas outburst, rock burst and rock caving during deep mining excavation, which is often accompanied by plate crack, spalling and other disasters, seriously affecting the stability of stope and roadway. Taking thin rectangular coal and rock mass as the research object, the dual equation of the free vibration was derived and the exact solution model of the free vibration was established with the use of Hamilton dual system. Based on the action characteristics of the uniform impact load, the effective mode of the forced vibration was obtained by using the Duhamel integral principle and the orthogonality of the mode function. Based on the third strength theory and the numerical simulation results, the dynamic damage process and development trend of coal and rock mass were analyzed under uniform impact load. It was concluded that the starting position of dynamic damage can be judged by the first order main mode, and the development direction and trend of the damage can be judged by the fifth and sixth order main modes. It was concluded that the vibration mode functions of coal and rock mass with four side fixed (C-C-C-C), the two sides fixed and simply supported on the other (S-C-S-C) are mainly composed of three modes that are the first order (dominant frequency), the fifth order and the sixth order, from which the dynamic damage mechanism is preliminarily studied.
基金the Major Programs of the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos. 70533050 and 50674089) for their support of this project
文摘For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.
基金National NaturalScience Foundation of China(52074151,52274085,52274123)Tiandi Science and Technology Co.,Ltd.Science and Technology Innovation Venture Capital Special Project(TDKC-2022-MS-01,TDKC-2022-QN-01,TDKC-2022-QN-02).
文摘The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability.Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts.In this study,the Synthetic Rock Mass method is employed to establish a numerical model,and the factors affecting coal post-peak characteristics are analyzed from four perspectives:coal matrix mechanical parameters,structural weak surface properties,height-to-width ratio,and loading rate.The research identifies four significant influencing factors:deformation modulus,density of discrete fracture networks,height-to-width ratio,and loading rate.The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed.The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches:weakening the mechanical properties of coal pillars,increasing the number of structural weak surfaces in coal pillars,reducing the width of coal pillars,and optimizing mining and excavation speed.The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.
基金funding support from National Natural Science Foundation of China(Grant No.41831278).
文摘For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.
基金the National Natural Science Foundation of China(Nos.41172290 and40572160)
文摘In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buried sand and a paleo-weathered rock mass was investigated in the laboratory by direct shear testing. A DRS-1 high pressure soil shear testing machine and orthogonal design method were used in the direct shear tests. Variance and range methods were applied to analyze the sensitivity of each factor that has an influence on the mechanical characters of the interface. The test results show that the normal pressure is the main influencing factor for mechanical characteristics of the interface, while the lithological characters and roughness are minor factors; the shear stress against shear displacement curve for the interface shows an overall hyperbola relationship, no obvious peak stress and dilatancy was observed.When the normal pressure is 6 MPa, the shear strengths of interfaces with different roughness are basically the same, and when the normal pressure is more than 8 MPa, the larger the roughness of the interface, the larger will be the shear strength; the shear strength has a better linear relationship with the normal pressure, which can be described by a linear Mohr–Coulomb criterion.
基金Foundatinitem Project(50274044) supported by the National Natural Science Foundation of China .
文摘Based on the natural characters of stratum, complicated geological mining conditions and the essence of mining rock mass destruction, the complexity of rock mass destruction caused by miningw as analyzed. The inner link between rock mass destruction phenomena caused by mining and nonlinear science was revealed. There are numerous cracks in natural rock mass. The cracks’ distribution is irregular and is of statistical fractal structure. Self-organizational nonlinear evolution of the inner structure flaws leads to the rock mass destruction with external force. The evolution includes single fault’s fractal development, formation and evolution of fractal crack network and coordination of fractal crack network, etc. The law of fractal crack network’s evolution was introduced, at the same time, the coordination of fractal crack network was analyzed. Finally, based on coordination the principal equation of mining-caused subsidence of structural rock mass was established and its steady-state solution and unsteady-state solution were found.
基金Supported by the National Major Fundamental Research Program of China(973 Project)(2005CB221503)National Science Foundation of China(50544010)
文摘Stress distribution rules and deformation and failure properties of coal and rockbodies influenced by mining were analyzed.Experimental research on permeability of coaland rock samples under different loading conditions was finished in the laboratory.In-situmeasurement of coal permeability influenced by actual mining was done as well.Theoryanalysis show that permeability varied with damage development of coal and rock understress,and the influence of fissure on permeability was greatest.Laboratory results showthat under different loading conditions permeability was different and it varied with stress,which indicated that permeability was directly related to the loading process.In-situ testsshowed that permeability is related to abutment stress to some degree.The above resultsmay be referenced to gas prevention and drainage.
基金Projects50490273 and 50474063 supported by National Natural Science Foundation of China
文摘The stress hardening characteristics of the reinforced rock mass in uniaxial compression tests were revealed by means of the experimental study on mechanical characteristics of cracked rock mass reinforced by bolting and grouting. And the load-beating mechanism of the reinforced rock mass was perfectly reflected by the experiment. The results can offer some useful advice for support design and stability analysis of deep drifts in unstable strata.
基金Project(2014QNB31)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51674248)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Tackling the problems of underground water storage in collieries in arid regions requires knowledge of the effect of water intrusion and loading rate on the mechanical properties of and crack development in coal–rock combinations. Fifty-four coal–rock combinations were prepared and split equally into groups containing different moisture contents(dry, natural moisture and saturated) to conduct acoustic emission testing under uniaxial compression with loading rates ranging from 0.1 mm/min to 0.6 mm/min. The results show that the peak stress and strength-softening modulus, elastic modulus, strain-softening modulus, and post-peak modulus partly decrease with increasing moisture content and loading rate. In contrast, peak strain increases with increasing moisture content and fluctuates with rising loading rate. More significantly, the relationship between stiffness and stress, combined with accumulated counts of acoustic emission, can be used to precisely predict all phases of crack propagation. This is helpful in studying the impact of moisture content and loading rate on crack propagation and accurately calculating mechanical properties. We also determined that the stress thresholds of crack closure, crack initiation, and crack damage do not vary with changes of moisture content and loading rate, constituting 15.22%, 32.20%, and 80.98% of peak stress, respectively. These outcomes assist in developing approaches to water storage in coal mines, determining the necessary width of waterproof coal–rock pillars, and methods of supporting water-enriched roadways, while also advances understanding the mechanical properties of coal–rock combinations and laws of crack propagation.
文摘The authors applied the Secondary Ion Mass Spectrometry (SIMS) technique to the analysis of compositions and structures of vitrinites fusinites, fusinites bitumens and graptolites in the hydrocarbon source rocks with different maturities dscribed their SIMS spectral characteristics and found that different macerals have differnt spectra which, reflected the compositional and structural differences of macerals. Moreover, the change bod of parameter CH2+/CH3+ can be used for the evaluation of thermal evolution regularity of macerals in the hydrocarbon source rocks The study results show that the SIMS technique is a powerful means for microara analysis of macerals in coals and source rocks. It is certain that the study level of macerals can be raised by detailed study of SIMS results of SIMS results of macerals.
基金The studies were accomplished within the framework of the project"Investigation of coal nanostructure as a source of coal mine methane"with a financial support of the Ministry of Education and Science of Ukraine according to the Order No.199 of February 10,2017.
文摘The purpose of this study was to develop a physico-mathematical model and technique for estimation of chemical bond stability depending on electric field intensity of an external point charge.A hypothesis for a possible physico-chemical mechanism of the formation of additional harmful gases in the rock destruction by blasting was proposed.The theoretical basis of the hypothesis is the method of theretical evaluation of bond energy depending on the distance to a point charge,the third Coulomb centre.The quantum-mechanical model for calculating the electronic terms of molecules makes it possible to solve problems associated with the determination of parameters of molecules under the action of various physical fields on the system under consideration.The model was approved for some diatomic molecules.The discrepancy between the experimental data and calculated data did not exceed 14%,which proves accuracy of the obtained results.The model can be used in the field of research into the causes of gas-dynamic phenomena in underground coal mines,in studies of the degree of stability of nanostructured components of coal under physical influences,and in the theoretical design of new compounds and structures in the field of nanomaterial science and nanotechnology.
文摘The size distribution of fragmented rocks depends on not only the blasting standard but also the mechanical properties, joint system and crack density of rock mass. As, especially, the cracks in the rock mass are heavily developed at the limestone quarries in Japan, the joints and/or cracks in the rock mass have big impacts on the blasting effects such as the size of fragmented rocks. Therefore, if the joint system and/or crack density in the rock mass can be known and evaluated in quantity, the blasting operation can be done more effectively, efficiency and safety. However, the guideline for designing the appropriate blasting standard based on the rock mass condition such as mechanical properties, joint system and/or distribution of cracks, discontinuities, from the scientific point of view, has not been developed yet. Therefore, a series of blasting tests had been conducted in different mines and faces, geological conditions and blasting standards in order to know the impacts of each factor on the blasting effects. This paper summarizes the results of blasting tests and describes the impacts of rock mass conditions and blasting standard on the size of fragmented rocks.
基金the Natural Science Fund of Liaoning Province(20042176)
文摘According to the rock burst features occurred in the coal mass of roadway rib in one mine,the mechanics model of coal mass and roof structure system along the edge of goaf was founded to analyze the stress of roof rock layer,so the subside curve of roof rock layer was deduced.Furthermore,the stability of coal and rock system were analyzed,the critical load and critical resistance zone were used to judge the danger degree of rock burst occurrence.The influence of coal mass strength,brittleness degree,coal seam thickness,roof thickness,suspending length,equivalent shear module on the critical load, critical resistance zone was confirmed.So the rock burst occurrence conditions of coal mass in roadway rib mainly depend on mining depth,coal seam thickness and hard roof and floor,which are decided by the above studies,and successfully applied in prediction and prevention of rock burst in this mine.
基金National Natural Science Foundation of China(4 9672 13 1)
文摘In accordance with the confusion on classification of source rocks, the authors raised a source rock classification for its enriched and dispersed organic matter types based on both Alpern’s idea and maceral genesis/composition. The determined rock type is roughly similar to palynofacies of Combaz , whereas it is "rock maceral facies (for coal viz. coal facies)" in strictly speaking. Therefore, it is necessary to use the organic ingredients classification proposed by the authors so that it can be used for both maceral analysis and environment research . This source rock classification not only shows sedimentology and diagenetic changes but also acquires organic matter type even if hydrocarbon potential derived from maceral’s geochemical parameters. So, it is considered as genetic classification. The "rock maceral facies" may be transformed to sedimentary organic facies , which is used as quantitative evaluation means if research being perfect.Now, there are many models in terms of structure either for coal or for kerogen. In our opinion, whatever coal or kerogen ought be polymer, then we follow Combaz’s thought and study structure of amorphous kerogens which are accordance with genetic mechanism showing biochemical and geochemical process perfectly. Here, we use the time of flight secondary ion mass spectrometry (TOFSIMS) to expand Combaz’s models from three to five. They are also models for coal.
基金the National Natural Science Foundation of China(Nos.52204114,52274145,U22A20165,and 52174089)the Natural Science Foundation of Jiangsu Province(No.BK20210522)+2 种基金the National Key Research and Development Program of China(No.2022YFE0128300)the China Postdoctoral Science Foundation(No.2023M733758)the Shandong Postdoctoral Science Foundation(No.SDCX-ZG-202302037).
文摘The interaction mechanism between coal and rock masses with supporting materials is significant in roadway control, especially in deep underground mining situations where dynamic hazards frequently happened due to high geo-stress and strong disturbed effects. This paper is to investigate the strain energy evolution in the interaction between coal and rock masses with self-designed energy-absorbing props and rock bolts by numerical modeling with the finite difference method. The interaction between rock and rock bolt/prop is accomplished by the cables element and the interface between the inner and outer props. Roadway excavation and coal extraction conditions in deep mining are numerically employed to investigate deformation, plastic zone ranges, strain energy input, accumulation, dissipation,and release. The effect on strain energy input, accumulation, dissipation, and release with rock deformation, and the plastic zone is addressed. A ratio of strain energy accumulation, dissipation, and release with energy input a, β, γ is to assess the dynamic hazards. The effects on roadway excavation and coal extraction steps of a, β, γ are discussed. The results show that:(1) In deep high geo-stress roadways, the energyabsorbing support system plays a dual role in resisting deformation and reducing the scope of plastic zones in surrounding rock, as well as absorbing energy release in the surrounding rock, especially in the coal extraction state to mitigate disturbed effects.(2) The strain energy input, accumulation is dependent on roadway deformation, the strain energy dissipation is relied on plastic zone area and disturbed effects, and strain energy release density is the difference among the three. The function of energyabsorbing rock bolts and props play a key role to mitigate strain energy release density and amount, especially in coal extraction condition, with a peak density value from 4×10^(4) to 1×10^(4)J/m^(3), and amount value from 3.57×10^(8) to 1.90×10^(6)J.(3) When mining is advanced in small steps, the strain energy accumulation is dominated. While in a large step, the released energy is dominant, thus a more dynamic hazards proneness. The energy-absorbing rock bolt and prop can reduce three times strain energy release amount, thus reducing the dynamic hazards. The results suggest that energy-absorbing props and rock bolts can effectively reduce the strain energy in the coal and rock masses, and prevent rock bursts and other hazards.The numerical model developed in this study can also be used to optimize the design of energyabsorbing props and rock bolts for specific mining conditions.
基金supported by the National Natural Science Foundation of China(Nos.50490275 and 50778184)
文摘Size and quantity of fractured zone and non-fractured zone are controlled by cracks contained in deep rock masses. Zonal disintegration mechanism is strongly dependent on the interaction among cracks. The strong interaction among cracks is investigated using stress superposition principle and the Chebyshev polynomials expansion of the pseudo-traction. It is found from numerical results that crack nucleation, growth and coalescence lead to failure of deep crack- weakened rock masses. The stress redistribution around the surrounding rock mass induced by unloading excavation is studied. The effect of the excavation time on nucleation, growth, interaction and coalescence of cracks was analyzed. Moreover, the influence of the excavation time on the size and quantity of fractured zone and non-fractured zone was given. When the excavation time is short, zonal disintegration phenomenon may occur in deep rock masses. It is shown from numerical results that the size and quantity of fractured zone increase with decreasing excavation time, and the size and quantity of fractured zone increase with the increasing value of in-situ geostress.