In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relat...In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.展开更多
There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement compo...There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced.展开更多
Crane Hooks are highly liable components and are always subjected to failure due to accumulation of large amount of stresses which can eventually lead to its failure. To study the stress pattern of crane hook in its l...Crane Hooks are highly liable components and are always subjected to failure due to accumulation of large amount of stresses which can eventually lead to its failure. To study the stress pattern of crane hook in its loaded condition, a solid model of crane hook is prepared with the help of CMM and CAD software. Real time pattern of stress concentration in 3D model of crane hook is obtained. The stress distribution pattern is verified for its correctness on an acrylic model of crane hook using Diffused light Polariscope set up. By predicting the stress concentration area, the shape of the crane is modified to increase its working life and reduce the failure rates.展开更多
In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies....In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transfo...Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transformation relation of displacements and loads between the surface nodes and middle plane nodes. This method considers the nodes on upstream and downstream surfaces of the arch dam to be exit nodes (master nodes), and the middle plane nodes to be slave nodes. According to the derived displacement and load transformation matrices, the equilibrium equation treating the displacement of middle plane nodes as a basic unknown variable is transformed into one that treats the displacement of upstream and downstream nodes as a basic unknown variable. Because the surface nodes have only three degrees of freedom (DOF), this method can be directly coupled with the finite element method (FEM), which is used for foundation simulation to analyze the stress of the arch dam with consideration of dam-foundation interaction. Moreover, using the FEM, the nodal load of the arch dam can be easily obtained. Case studies of a typical cylindrical arch dam and the Wudongde arch dam demonstrate the robustness and feasibility of the proposed method.展开更多
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b...This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.展开更多
Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability an...Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.展开更多
The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental result...The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental results show that most specimens mainly failed at the 7075 side weld toes even though the base material tensile strength of 7075 is higher than that of 6061.The maximum stress-strain concentration in the two finite element models is located at the 7075 side weld toe,which is basically consistent with the actual fracture location.The weld zone on the 7075 side experiences severe material softening,with a large gradient.However,the Vickers hardness value on the 6061 side negligibly changes and fluctuates around 70 HV.No obvious defects are found on the fatigue fracture,but a large number of secondary cracks appear.Cracks germinate from the weld toe and propagate in the direction of the plate thickness.Weld reinforcement has a serious impact on fatigue life.Fatigue life will decrease exponentially as the weld reinforcement increases under low stress.It is found that the notch stress method can give a better fatigue life prediction for TIG weldments,and the errors of the predicted results are within the range of two factors,while the prediction accuracy decreases under low stress.The equivalent structural stress method can also be used for fatigue life prediction of TIG weldments,but the errors of prediction results are within the range of three factors,and the accuracy decreases under high stress.展开更多
Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams sh...Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.展开更多
In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the com...In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.展开更多
In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechan...In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechanism a priori and enable the determination of the safety level more accurately. The paper compares the performances of strength reduction finite element analysis(SRFEA) with finite element limit analysis(FELA), whereby the focus is related to non-associated plasticity. Displacement-based finite element analyses using a strength reduction technique suffer from numerical instabilities when using non-associated plasticity, especially when dealing with high friction angles but moderate dilatancy angles. The FELA on the other hand provides rigorous upper and lower bounds of the factor of safety(FoS) but is restricted to associated flow rules. Suggestions to overcome this problem, proposed by Davis(1968), lead to conservative FoSs; therefore, an enhanced procedure has been investigated. When using the modified approach, both the SRFEA and the FELA provide very similar results. Further studies highlight the advantages of using an adaptive mesh refinement to determine FoSs. Additionally, it is shown that the initial stress field does not affect the FoS when using a Mohr-Coulomb failure criterion.展开更多
Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calib...Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calibration coefficients were modified in the plasticity deformation stage based on the distortion energy theory. The calibration experiment of calibration coefficients was simulated by the finite element model, and the plasticity modification formulas of 7075 aluminum alloy were obtained. From the results of uniaxial tensile loading test, the measuring errors of high residual stress are significantly reduced from-4.071%~53.440% to-5.140% ~ 0.609% after the plasticity modification. This work provides an effective way to expand the application of hole-drilling method.展开更多
The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or ...The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or gel, and the suspended particles in air, and the corrosive composition, such as SO2, CO2, O2 and NaCI, in addition to the inhomogeneity of the organization and composition, which lead to the corrosion cell reaction, so that cause the corrosion initial from the contact surface of the between steel pipes, so as to form the corrosion groove. At the same time, the corrosion groove with depth of 0.125t (t pipe wall thickness) on the pipe of φ 1016 mm×21 mm ×70 API SPEC 5L was simulated using the FEM (finite element method), and the stress and strain distribution of the defect area near corrosion groove were solved at the inner pressure of 12 MPa, 10 MPa, 8 MPa, 6 MPa, 4 MPa and 2 MPa, respectively, which showed that no matter the pressure values were, the maximum stress and strain were lied at the bottom of corrosion defects groove and were in good linear relationship with the internal pressure increasing from 2 MPa to 6 MPa. When the internal pres- sures were greater than 6 MPa, they felled into the nonlinear model and to be yielded or even to be destroyed. In addition, the residual strength and the limit operation pressure of the corrode pipe with the defects groove of 0.125t were calculated or simulated according to the theoretical calculation, the finite element method based on the stress, the finite element method based on strain, DNV-RP-F101, ASME B31G and experimental methods respectively. The results showed that the residual strength and the limit operation pressure of the defective parts solved by the finite element method based on stress were 424 MPa, and 15.34 MPa, respectively, which was very close to that of experimental method, the residual strength was 410 MPa and the limit operation pressure 14.78 MPa. Besides, the results also showed that it was feasible and effective to simulate the residual strength of the structure with corrosion defects using the finite element method.展开更多
背景:脊柱骨折最高发部位是胸腰段,其症状为后背部疼痛、后凸畸形、活动受限,或伴脊髓神经损伤引发下肢疼痛、麻木甚至截瘫等并发症。有限元法是一种数字化的计算机建模技术,能真实模拟实物模型并进行受力分析。目的:综述有限元法在脊...背景:脊柱骨折最高发部位是胸腰段,其症状为后背部疼痛、后凸畸形、活动受限,或伴脊髓神经损伤引发下肢疼痛、麻木甚至截瘫等并发症。有限元法是一种数字化的计算机建模技术,能真实模拟实物模型并进行受力分析。目的:综述有限元法在脊柱胸腰段骨折中的应用。方法:在中英文文献数据库PubMed、Web of Science、中国知网中检索2024年3月之前发表的有限元分析法在脊柱胸腰段骨折中应用的相关文献,中英文检索词为“有限元分析法(finite element analysis methods)”“生物力学(biomechanical phenomena)”“应力分析(stress analysis)”“胸腰椎骨折(thoracolumbar fractures)”“脊柱骨折(spinal fractures)”,最终纳入55篇文献。结果与结论:①通过有限元法对不同病因(骨质疏松性、创伤性、病理性)导致的胸腰椎骨折进行探索,有利于对各种类型胸腰椎骨折的生物力学特征有更加深刻的认识,完善对胸腰椎骨折的个性化和精细化治疗;②单一样本或数量较少样本的有限元分析具有偶然性,未来的有限元分析需要更大的样本数量来减少样本偶然性带来的误差;③仅骨骼的刚性结构不能满足实物的完整性所具有的生物力学工况,未来的有限元模型需要尽可能纳入实物的所有结构(例如肌肉、韧带等软组织);④有限元法在骨质疏松性和创伤性胸腰椎骨折方面的研究较多,未来需要进行更加深入的研究;病理性胸腰椎骨折领域的研究较少,未来研究范围较广。展开更多
背景:退行性脊柱侧弯是指发生在成年之后,脊柱冠状面Cobb角度>10°伴有矢状面畸形和旋转脱位,常常产生脊髓、神经受压症状,如腰疼、下肢疼痛、麻木、无力、神经源性跛行等。有限元法是一种计算机建模的力学分析技术,通过建立数...背景:退行性脊柱侧弯是指发生在成年之后,脊柱冠状面Cobb角度>10°伴有矢状面畸形和旋转脱位,常常产生脊髓、神经受压症状,如腰疼、下肢疼痛、麻木、无力、神经源性跛行等。有限元法是一种计算机建模的力学分析技术,通过建立数字化网格模型,能真实还原人类脊柱模型并可进行脊柱力学研究。目的:综述有限元法在退行性脊柱侧弯病因及治疗中的应用。方法:在文献数据库中国知网、PubMed、Web of Science中检索2023年10月之前发表的有关有限元分析法在退行性脊柱侧弯中应用的文献,英文检索词为finite element anaysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity,中文检索词为有限元分析法、生物力学、应力分析、退变性脊柱侧凸、成年性脊柱侧凸。最终纳入文献54篇。结果与结论:①运用有限元法构建的退行性脊柱侧弯模型得出的生物力学研究结果,与体内试验研究结果相同,证明有限元法在退行性脊柱侧弯中具有较高的实用价值;②通过有限元法对退行性脊柱侧弯的病因与治疗进行研究,有利于预防其发生、减缓其进展、制定出更合适的治疗方案、减少手术并发症出现、促进患者术后康复等;③有限元法从材料单一的骨性结构逐渐发展到纳入肌肉韧带等软组织的阶段,且小样本含量越来越无法满足研究需要;④有限元法在退行性脊柱侧弯领域有较大的发展空间。展开更多
文摘In this paper, the stress-strain curve of material is fitted by polygonal line composed of three lines. According to the theory of proportional loading in elastoplasticity, we simplify the complete stress-strain relations, which are given by the increment theory of elastoplasticity. Thus, the finite element equation with the solution of displacement is derived. The assemblage elastoplastic stiffness matrix can be obtained by adding something to the elastic matrix, hence it will shorten the computing time. The determination of every loading increment follows the von Mises yield criteria. The iterative method is used in computation. It omits the redecomposition of the assemblage stiffness matrix and it will step further to shorten the computing time. Illustrations are given to the high-order element application departure from proportional loading, the computation of unloading fitting to the curve and the problem of load estimation.
文摘There is a common difficulty in elastic-plastic impact codes such as EPIC[2,3] NONSAP[4], etc.. Most of these codes use the simple linear functions usually taken from static problem to represent the displacement components. In such finite element formulation, the stress components are constant in each element and they are discontinuous in any two neighboring elements. Therefore, the bases of using the virtual work principle in such elements are unreliable. In this paper, we introduce a new method, namely, the compatible stress iterative method, to eliminate the above-said difficulty. The calculated examples show that the calculation using the new method in dynamic finite element analysis of high velocity impact is valid and stable, and the element stiffness can be somewhat reduced.
文摘Crane Hooks are highly liable components and are always subjected to failure due to accumulation of large amount of stresses which can eventually lead to its failure. To study the stress pattern of crane hook in its loaded condition, a solid model of crane hook is prepared with the help of CMM and CAD software. Real time pattern of stress concentration in 3D model of crane hook is obtained. The stress distribution pattern is verified for its correctness on an acrylic model of crane hook using Diffused light Polariscope set up. By predicting the stress concentration area, the shape of the crane is modified to increase its working life and reduce the failure rates.
文摘In recent years,finite element analysis is increasingly being proposed in slope stability problems as a competitive method to traditional limit equilibrium methods(LEMs)which are known for their inherent deficiencies.However,the application of finite element method(FEM)to slope stability as a strength reduction method(SRM)or as finite element limit analysis(FELA)is not always a success for the drawbacks that characterize both methods.To increase the performance of finite element analysis in this problem,a new approach is proposed in this paper.It consists in gradually expanding the mobilized stress Mohr’s circles until the soil failure occurs according to a prescribed non-convergence criterion.The present approach called stress deviator increasing method(SDIM)is considered rigorous for three main reasons.Firstly,it preserves the definition of the factor of safety(FOS)as the ratio of soil shear strength to the mobilized shear stress.Secondly,it maintains the progressive development of shear stress resulting from the increase in the principal stress deviator on the same plane,on which the shear strength takes place.Thirdly,by introducing the concept of equivalent stress loading,the resulting trial stresses are checked against the violation of the actual yield criterion formed with the real strength parameters rather than those reduced by a trial factor.The new numerical procedure was encoded in a Fortran computer code called S^(4)DINA and verified by several examples.Comparisons with other numerical methods such as the SRM,gravity increasing method(GIM)or even FELA by assessing both the FOS and contours of equivalent plastic strains showed promising results.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
基金supported by the National Natural Science Foundation of China (Grant No. 90510017)
文摘Based on the general displacement method and the basic hypothesis of the trial load method, a new advanced trial load method, the general displacement arch-cantilever element method, was proposed to derive the transformation relation of displacements and loads between the surface nodes and middle plane nodes. This method considers the nodes on upstream and downstream surfaces of the arch dam to be exit nodes (master nodes), and the middle plane nodes to be slave nodes. According to the derived displacement and load transformation matrices, the equilibrium equation treating the displacement of middle plane nodes as a basic unknown variable is transformed into one that treats the displacement of upstream and downstream nodes as a basic unknown variable. Because the surface nodes have only three degrees of freedom (DOF), this method can be directly coupled with the finite element method (FEM), which is used for foundation simulation to analyze the stress of the arch dam with consideration of dam-foundation interaction. Moreover, using the FEM, the nodal load of the arch dam can be easily obtained. Case studies of a typical cylindrical arch dam and the Wudongde arch dam demonstrate the robustness and feasibility of the proposed method.
文摘This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.
文摘Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.
基金Partially funded by the National Natural Science Foundation of China(No.51065012)。
文摘The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental results show that most specimens mainly failed at the 7075 side weld toes even though the base material tensile strength of 7075 is higher than that of 6061.The maximum stress-strain concentration in the two finite element models is located at the 7075 side weld toe,which is basically consistent with the actual fracture location.The weld zone on the 7075 side experiences severe material softening,with a large gradient.However,the Vickers hardness value on the 6061 side negligibly changes and fluctuates around 70 HV.No obvious defects are found on the fatigue fracture,but a large number of secondary cracks appear.Cracks germinate from the weld toe and propagate in the direction of the plate thickness.Weld reinforcement has a serious impact on fatigue life.Fatigue life will decrease exponentially as the weld reinforcement increases under low stress.It is found that the notch stress method can give a better fatigue life prediction for TIG weldments,and the errors of the predicted results are within the range of two factors,while the prediction accuracy decreases under low stress.The equivalent structural stress method can also be used for fatigue life prediction of TIG weldments,but the errors of prediction results are within the range of three factors,and the accuracy decreases under high stress.
文摘Taking account of the progressive cracking and crushing of the concrete, the full-range nonlinear analysis has been made for a R.C. Structure, from loading to cracking until crushing for some elements. The diagrams showing the distribution of the stresses and the horizontal displacements and the pictures showing the cracking and crushing of the concrete are given. This paper also gives the comparison between the results of nonlinear analysis and linear analysis.
文摘In this paper, a computational method for finite element stress analysis of a cyclically symmetric structure subjected to arbitrary loads is provided. At first, using discrete Fourier transformation technique, the complete structure is analyzed by considering only one sector with appropriate complex constraints on its boundary with the adjacent sectors. Next, an imaginary structure which is composed of two identically overlapping sectors is constructed, and that the complex constraints mentioned above can be equivalently replaced by a set of real constraints on this imaginary structure is proved. Therefore, the stress analysis of a cyclically symmetric structure can be solved conveniently by most of finite element programs.
文摘In recent years, finite element analyses have increasingly been utilized for slope stability problems. In comparison to limit equilibrium methods, numerical analyses do not require any definition of the failure mechanism a priori and enable the determination of the safety level more accurately. The paper compares the performances of strength reduction finite element analysis(SRFEA) with finite element limit analysis(FELA), whereby the focus is related to non-associated plasticity. Displacement-based finite element analyses using a strength reduction technique suffer from numerical instabilities when using non-associated plasticity, especially when dealing with high friction angles but moderate dilatancy angles. The FELA on the other hand provides rigorous upper and lower bounds of the factor of safety(FoS) but is restricted to associated flow rules. Suggestions to overcome this problem, proposed by Davis(1968), lead to conservative FoSs; therefore, an enhanced procedure has been investigated. When using the modified approach, both the SRFEA and the FELA provide very similar results. Further studies highlight the advantages of using an adaptive mesh refinement to determine FoSs. Additionally, it is shown that the initial stress field does not affect the FoS when using a Mohr-Coulomb failure criterion.
基金supported by the Natural Science Foundation of Fujian Provinceof China(No.2018J01082)the China Scholarship Council(No.201806315006)the National Natural Science Foundation of China(No.51305371)
文摘Hole-drilling method is a commonly used method for measuring residual stress. The calibration coefficients in ASTM E837-13 a would cause large errors due to the plasticity deformation of materials. In the study, calibration coefficients were modified in the plasticity deformation stage based on the distortion energy theory. The calibration experiment of calibration coefficients was simulated by the finite element model, and the plasticity modification formulas of 7075 aluminum alloy were obtained. From the results of uniaxial tensile loading test, the measuring errors of high residual stress are significantly reduced from-4.071%~53.440% to-5.140% ~ 0.609% after the plasticity modification. This work provides an effective way to expand the application of hole-drilling method.
基金supported by the National Natural Science Foundation of China(Nos.51101127 and 51171154)Soar Star of Northwestern Polytechnical University(2011)Fundamental Research Foundation of Northwestern Polytechnical University(No.JC201213)
文摘The basic principle of corrode groove on outside of steel pipe during storage was analyzed in this paper, namely the water film on the contacted surface of steel pipe, which gathered from humidity in the air, rain or gel, and the suspended particles in air, and the corrosive composition, such as SO2, CO2, O2 and NaCI, in addition to the inhomogeneity of the organization and composition, which lead to the corrosion cell reaction, so that cause the corrosion initial from the contact surface of the between steel pipes, so as to form the corrosion groove. At the same time, the corrosion groove with depth of 0.125t (t pipe wall thickness) on the pipe of φ 1016 mm×21 mm ×70 API SPEC 5L was simulated using the FEM (finite element method), and the stress and strain distribution of the defect area near corrosion groove were solved at the inner pressure of 12 MPa, 10 MPa, 8 MPa, 6 MPa, 4 MPa and 2 MPa, respectively, which showed that no matter the pressure values were, the maximum stress and strain were lied at the bottom of corrosion defects groove and were in good linear relationship with the internal pressure increasing from 2 MPa to 6 MPa. When the internal pres- sures were greater than 6 MPa, they felled into the nonlinear model and to be yielded or even to be destroyed. In addition, the residual strength and the limit operation pressure of the corrode pipe with the defects groove of 0.125t were calculated or simulated according to the theoretical calculation, the finite element method based on the stress, the finite element method based on strain, DNV-RP-F101, ASME B31G and experimental methods respectively. The results showed that the residual strength and the limit operation pressure of the defective parts solved by the finite element method based on stress were 424 MPa, and 15.34 MPa, respectively, which was very close to that of experimental method, the residual strength was 410 MPa and the limit operation pressure 14.78 MPa. Besides, the results also showed that it was feasible and effective to simulate the residual strength of the structure with corrosion defects using the finite element method.
文摘背景:脊柱骨折最高发部位是胸腰段,其症状为后背部疼痛、后凸畸形、活动受限,或伴脊髓神经损伤引发下肢疼痛、麻木甚至截瘫等并发症。有限元法是一种数字化的计算机建模技术,能真实模拟实物模型并进行受力分析。目的:综述有限元法在脊柱胸腰段骨折中的应用。方法:在中英文文献数据库PubMed、Web of Science、中国知网中检索2024年3月之前发表的有限元分析法在脊柱胸腰段骨折中应用的相关文献,中英文检索词为“有限元分析法(finite element analysis methods)”“生物力学(biomechanical phenomena)”“应力分析(stress analysis)”“胸腰椎骨折(thoracolumbar fractures)”“脊柱骨折(spinal fractures)”,最终纳入55篇文献。结果与结论:①通过有限元法对不同病因(骨质疏松性、创伤性、病理性)导致的胸腰椎骨折进行探索,有利于对各种类型胸腰椎骨折的生物力学特征有更加深刻的认识,完善对胸腰椎骨折的个性化和精细化治疗;②单一样本或数量较少样本的有限元分析具有偶然性,未来的有限元分析需要更大的样本数量来减少样本偶然性带来的误差;③仅骨骼的刚性结构不能满足实物的完整性所具有的生物力学工况,未来的有限元模型需要尽可能纳入实物的所有结构(例如肌肉、韧带等软组织);④有限元法在骨质疏松性和创伤性胸腰椎骨折方面的研究较多,未来需要进行更加深入的研究;病理性胸腰椎骨折领域的研究较少,未来研究范围较广。
文摘背景:退行性脊柱侧弯是指发生在成年之后,脊柱冠状面Cobb角度>10°伴有矢状面畸形和旋转脱位,常常产生脊髓、神经受压症状,如腰疼、下肢疼痛、麻木、无力、神经源性跛行等。有限元法是一种计算机建模的力学分析技术,通过建立数字化网格模型,能真实还原人类脊柱模型并可进行脊柱力学研究。目的:综述有限元法在退行性脊柱侧弯病因及治疗中的应用。方法:在文献数据库中国知网、PubMed、Web of Science中检索2023年10月之前发表的有关有限元分析法在退行性脊柱侧弯中应用的文献,英文检索词为finite element anaysis,biomechanics,stress analysis,degenerative scoliosis,adult spinal deformity,中文检索词为有限元分析法、生物力学、应力分析、退变性脊柱侧凸、成年性脊柱侧凸。最终纳入文献54篇。结果与结论:①运用有限元法构建的退行性脊柱侧弯模型得出的生物力学研究结果,与体内试验研究结果相同,证明有限元法在退行性脊柱侧弯中具有较高的实用价值;②通过有限元法对退行性脊柱侧弯的病因与治疗进行研究,有利于预防其发生、减缓其进展、制定出更合适的治疗方案、减少手术并发症出现、促进患者术后康复等;③有限元法从材料单一的骨性结构逐渐发展到纳入肌肉韧带等软组织的阶段,且小样本含量越来越无法满足研究需要;④有限元法在退行性脊柱侧弯领域有较大的发展空间。