Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants,especially,heavy metals.In this study,the safety of the use of crayfish shell as a biosorbent was first assessed by release...Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants,especially,heavy metals.In this study,the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions,such as Cu^(2+),Zn^(2+),and Cr^(3+),in aqueous solution under different environmental conditions.The release concentrations of heavy metals were dependent on pH,ionic strength,and humic acid;and the maximum release concentrations of heavy metals were still lower than the national standard.Specifically,Cu^(2+) and Pb^(2+) removal by crayfish shell in synthetic wastewater was investigated.The removal process involved biosorption,precipitation,and complexation,and the results indicate that crayfish shell is an excellent biosorbent for Cu^(2+) and Pb^(2+) removal.The precipitation step is particularly dependent on Ca species,pH,and temperature.The maximum removal capacities of Pb^(2+) and Cu^(2+) were 676.20 and 119.98 mg/g,respectively.The related precipitates and the generated complex products include Cu_(2)CO_(3)(OH)_(2),Ca_(2)CuO_(3),CuCO_(3),Pb_(2)CO_(3)(OH)_(2),CaPb_(3)O_(4),and PbCO_(3).展开更多
以小龙虾壳为原料,按酸碱交替法生产的甲壳素,蛋白质和虾青素等物质流失于废水中,采用壳聚糖作絮凝剂,可将虾青素与蛋白质絮凝沉淀。试验结果表明:调节pH值6.0,每升废水中添加40 ml 1%壳聚糖醋酸水溶液,静置3 h,废水中溶液的透光率最低...以小龙虾壳为原料,按酸碱交替法生产的甲壳素,蛋白质和虾青素等物质流失于废水中,采用壳聚糖作絮凝剂,可将虾青素与蛋白质絮凝沉淀。试验结果表明:调节pH值6.0,每升废水中添加40 ml 1%壳聚糖醋酸水溶液,静置3 h,废水中溶液的透光率最低,絮凝物蛋白质回收率达88.6%。使用几种蛋白酶水解絮凝物,其中风味蛋白酶水解度最大,在初始pH值6.5,水解温度55℃,试验确定:选用风味蛋白酶1.5 g/kg絮凝物,固液比1:2时,保温酶解时间4 h,虾青素提取率可达4.49%。该条件下絮凝物蛋白质的水解度为23.8%。提取虾青素并将水解后的蛋白浓缩,喷雾干燥,制成水解动物蛋白,产品不苦,具有良好的风味。展开更多
As a new research focus in the field of biological resources,crayfish shells have great potential for development and utilization.In this review,the typical methods and research progress of separating the primary comp...As a new research focus in the field of biological resources,crayfish shells have great potential for development and utilization.In this review,the typical methods and research progress of separating the primary components such as chitosan,protein,and astaxanthin from crayfish shells and converting crayfish shells into functional carbon-based materials are introduced in detail.Then,the application of crayfish shell and typically modified crayfish-shell biochar in adsorption,antibacterial,electrochemical,etc.is reviewed.Finally,the future research outlook is proposed.This review can provide some perspectives on the development of the application of crayfish shells and crayfish-shell derivatives.展开更多
基金supported by the Key Special Program on the S&T for the Pollution Control and Treatment of Water Bodies(No.2017ZX07603-003)。
文摘Crayfish shell is an abundant natural waste and is also a potential biosorbent for pollutants,especially,heavy metals.In this study,the safety of the use of crayfish shell as a biosorbent was first assessed by release experiments involving primary heavy metal ions,such as Cu^(2+),Zn^(2+),and Cr^(3+),in aqueous solution under different environmental conditions.The release concentrations of heavy metals were dependent on pH,ionic strength,and humic acid;and the maximum release concentrations of heavy metals were still lower than the national standard.Specifically,Cu^(2+) and Pb^(2+) removal by crayfish shell in synthetic wastewater was investigated.The removal process involved biosorption,precipitation,and complexation,and the results indicate that crayfish shell is an excellent biosorbent for Cu^(2+) and Pb^(2+) removal.The precipitation step is particularly dependent on Ca species,pH,and temperature.The maximum removal capacities of Pb^(2+) and Cu^(2+) were 676.20 and 119.98 mg/g,respectively.The related precipitates and the generated complex products include Cu_(2)CO_(3)(OH)_(2),Ca_(2)CuO_(3),CuCO_(3),Pb_(2)CO_(3)(OH)_(2),CaPb_(3)O_(4),and PbCO_(3).
基金support from the Key Special Program on the S&T for the Pollution Control,and Treatment of Water Bodies(No.2017ZX07603-003).
文摘As a new research focus in the field of biological resources,crayfish shells have great potential for development and utilization.In this review,the typical methods and research progress of separating the primary components such as chitosan,protein,and astaxanthin from crayfish shells and converting crayfish shells into functional carbon-based materials are introduced in detail.Then,the application of crayfish shell and typically modified crayfish-shell biochar in adsorption,antibacterial,electrochemical,etc.is reviewed.Finally,the future research outlook is proposed.This review can provide some perspectives on the development of the application of crayfish shells and crayfish-shell derivatives.