Research on wind power capacity credit at the operational level plays an important role in power system dispatching.With the popularity of energy storage devices,it is increasingly necessary to study the impact of ene...Research on wind power capacity credit at the operational level plays an important role in power system dispatching.With the popularity of energy storage devices,it is increasingly necessary to study the impact of energy storage devices on wind power operational capacity credit.The definition of wind power operational capacity credit is given.The available capacity model of different generators and the charging and discharging model of the energy storage are established.Based on the above model,the evaluation method of wind power operation credible capacity considering energy storage devices is proposed.The influence of energy storage on the wind power operation credible capacity is obtained by case study,which is of great help for the power system dispatching operation and wind power accommodation.展开更多
This paper presents a novel method for accurately estimating the cumulative capacity credit(CCC)of renewable energy(RE)projects.Leveraging data from the main interconnected system(MIS)of Oman for 2028,where a substant...This paper presents a novel method for accurately estimating the cumulative capacity credit(CCC)of renewable energy(RE)projects.Leveraging data from the main interconnected system(MIS)of Oman for 2028,where a substantial increase in RE generation is anticipated,the method is introduced alongside the traditional effective load carrying capability(ELCC)method.To ensure its robustness,we compare CCC results with ELCC calculations using two distinct standards of reliability criteria:loss of load hours(LOLH)at 24 hour/year and 2.4 hour/year.The method consistently gives accurate results,emphasizing its exceptional accuracy,efficiency,and simplicity.A notable feature of the method is its independence from loss of load probability(LOLP)calculations and the iterative procedures associated with analytic-based reliability methods.Instead,it relies solely on readily available data such as annual hourly load profiles and hourly generation data from integrated RE plants.This innovation is of particular significance to prospective independent power producers(IPPs)in the RE sector,offering them a valuable tool for estimating capacity credits without the need for sensitive generating unit forced outage rate data,often restricted by privacy concerns.展开更多
基金supported by the Innovation Fund of China Electric Power Institute(Project of Research on Reliability of Renewable Energy Generation Capacity based on Probability Prediction and Probabilistic Production Simulation).
文摘Research on wind power capacity credit at the operational level plays an important role in power system dispatching.With the popularity of energy storage devices,it is increasingly necessary to study the impact of energy storage devices on wind power operational capacity credit.The definition of wind power operational capacity credit is given.The available capacity model of different generators and the charging and discharging model of the energy storage are established.Based on the above model,the evaluation method of wind power operation credible capacity considering energy storage devices is proposed.The influence of energy storage on the wind power operation credible capacity is obtained by case study,which is of great help for the power system dispatching operation and wind power accommodation.
文摘This paper presents a novel method for accurately estimating the cumulative capacity credit(CCC)of renewable energy(RE)projects.Leveraging data from the main interconnected system(MIS)of Oman for 2028,where a substantial increase in RE generation is anticipated,the method is introduced alongside the traditional effective load carrying capability(ELCC)method.To ensure its robustness,we compare CCC results with ELCC calculations using two distinct standards of reliability criteria:loss of load hours(LOLH)at 24 hour/year and 2.4 hour/year.The method consistently gives accurate results,emphasizing its exceptional accuracy,efficiency,and simplicity.A notable feature of the method is its independence from loss of load probability(LOLP)calculations and the iterative procedures associated with analytic-based reliability methods.Instead,it relies solely on readily available data such as annual hourly load profiles and hourly generation data from integrated RE plants.This innovation is of particular significance to prospective independent power producers(IPPs)in the RE sector,offering them a valuable tool for estimating capacity credits without the need for sensitive generating unit forced outage rate data,often restricted by privacy concerns.