期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
How Many People are Using Credit Cards in China
1
《China's Foreign Trade》 2000年第6期45-45,共1页
关键词 How Many People are Using credit cards in China
下载PDF
A Self-Adapting and Efficient Dandelion Algorithm and Its Application to Feature Selection for Credit Card Fraud Detection
2
作者 Honghao Zhu MengChu Zhou +1 位作者 Yu Xie Aiiad Albeshri 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期377-390,共14页
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all... A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods. 展开更多
关键词 credit card fraud detection(CCFD) dandelion algorithm(DA) feature selection normal sowing operator
下载PDF
A Credit Card Fraud Detection Model Based on Multi-Feature Fusion and Generative Adversarial Network 被引量:1
3
作者 Yalong Xie Aiping Li +2 位作者 Biyin Hu Liqun Gao Hongkui Tu 《Computers, Materials & Continua》 SCIE EI 2023年第9期2707-2726,共20页
Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr... Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses. 展开更多
关键词 credit card fraud detection imbalanced classification feature fusion generative adversarial networks anti-fraud systems
下载PDF
A Credit Card Fraud Model Prediction Method Based on Penalty Factor Optimization AWTadaboost 被引量:1
4
作者 Wang Ning Siliang Chen +2 位作者 Fu Qiang Haitao Tang Shen Jie 《Computers, Materials & Continua》 SCIE EI 2023年第3期5951-5965,共15页
With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detec... With the popularity of online payment, how to perform creditcard fraud detection more accurately has also become a hot issue. And withthe emergence of the adaptive boosting algorithm (Adaboost), credit cardfraud detection has started to use this method in large numbers, but thetraditional Adaboost is prone to overfitting in the presence of noisy samples.Therefore, in order to alleviate this phenomenon, this paper proposes a newidea: using the number of consecutive sample misclassifications to determinethe noisy samples, while constructing a penalty factor to reconstruct thesample weight assignment. Firstly, the theoretical analysis shows that thetraditional Adaboost method is overfitting in a noisy training set, which leadsto the degradation of classification accuracy. To this end, the penalty factorconstructed by the number of consecutive misclassifications of samples isused to reconstruct the sample weight assignment to prevent the classifierfrom over-focusing on noisy samples, and its reasonableness is demonstrated.Then, by comparing the penalty strength of the three different penalty factorsproposed in this paper, a more reasonable penalty factor is selected.Meanwhile, in order to make the constructed model more in line with theactual requirements on training time consumption, the Adaboost algorithmwith adaptive weight trimming (AWTAdaboost) is used in this paper, so thepenalty factor-based AWTAdaboost (PF_AWTAdaboost) is finally obtained.Finally, PF_AWTAdaboost is experimentally validated against other traditionalmachine learning algorithms on credit card fraud datasets and otherdatasets. The results show that the PF_AWTAdaboost method has betterperformance, including detection accuracy, model recall and robustness, thanother methods on the credit card fraud dataset. And the PF_AWTAdaboostmethod also shows excellent generalization performance on other datasets.From the experimental results, it is shown that the PF_AWTAdaboost algorithmhas better classification performance. 展开更多
关键词 credit card fraud noisy samples penalty factors AWTadaboost algorithm
下载PDF
Credit Card Fraud Detection on Original European Credit Card Holder Dataset Using Ensemble Machine Learning Technique
5
作者 Yih Bing Chu Zhi Min Lim +3 位作者 Bryan Keane Ping Hao Kong Ahmed Rafat Elkilany Osama Hisham Abusetta 《Journal of Cyber Security》 2023年第1期33-46,共14页
The proliferation of digital payment methods facilitated by various online platforms and applications has led to a surge in financial fraud,particularly in credit card transactions.Advanced technologies such as machin... The proliferation of digital payment methods facilitated by various online platforms and applications has led to a surge in financial fraud,particularly in credit card transactions.Advanced technologies such as machine learning have been widely employed to enhance the early detection and prevention of losses arising frompotentially fraudulent activities.However,a prevalent approach in existing literature involves the use of extensive data sampling and feature selection algorithms as a precursor to subsequent investigations.While sampling techniques can significantly reduce computational time,the resulting dataset relies on generated data and the accuracy of the pre-processing machine learning models employed.Such datasets often lack true representativeness of realworld data,potentially introducing secondary issues that affect the precision of the results.For instance,undersampling may result in the loss of critical information,while over-sampling can lead to overfitting machine learning models.In this paper,we proposed a classification study of credit card fraud using fundamental machine learning models without the application of any sampling techniques on all the features present in the original dataset.The results indicate that Support Vector Machine(SVM)consistently achieves classification performance exceeding 90%across various evaluation metrics.This discovery serves as a valuable reference for future research,encouraging comparative studies on original dataset without the reliance on sampling techniques.Furthermore,we explore hybrid machine learning techniques,such as ensemble learning constructed based on SVM,K-Nearest Neighbor(KNN)and decision tree,highlighting their potential advancements in the field.The study demonstrates that the proposed machine learning models yield promising results,suggesting that pre-processing the dataset with sampling algorithm or additional machine learning technique may not always be necessary.This research contributes to the field of credit card fraud detection by emphasizing the potential of employing machine learning models directly on original datasets,thereby simplifying the workflow and potentially improving the accuracy and efficiency of fraud detection systems. 展开更多
关键词 Machine learning credit card fraud ensemble learning non-sampled dataset hybrid AI models European credit card holder
下载PDF
Real-Time Fraud Detection Using Machine Learning
6
作者 Benjamin Borketey 《Journal of Data Analysis and Information Processing》 2024年第2期189-209,共21页
Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit ca... Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit card dataset, I tackle class imbalance using the Synthetic Minority Oversampling Technique (SMOTE) to enhance modeling efficiency. I compare several machine learning algorithms, including Logistic Regression, Linear Discriminant Analysis, K-nearest Neighbors, Classification and Regression Tree, Naive Bayes, Support Vector, Random Forest, XGBoost, and Light Gradient-Boosting Machine to classify transactions as fraud or genuine. Rigorous evaluation metrics, such as AUC, PRAUC, F1, KS, Recall, and Precision, identify the Random Forest as the best performer in detecting fraudulent activities. The Random Forest model successfully identifies approximately 92% of transactions scoring 90 and above as fraudulent, equating to a detection rate of over 70% for all fraudulent transactions in the test dataset. Moreover, the model captures more than half of the fraud in each bin of the test dataset. SHAP values provide model explainability, with the SHAP summary plot highlighting the global importance of individual features, such as “V12” and “V14”. SHAP force plots offer local interpretability, revealing the impact of specific features on individual predictions. This study demonstrates the potential of machine learning, particularly the Random Forest model, for real-time credit card fraud detection, offering a promising approach to mitigate financial losses and protect consumers. 展开更多
关键词 credit Card Fraud Detection Machine Learning SHAP Values Random Forest
下载PDF
Credit Card Fraud Detection Based on Machine Learning 被引量:2
7
作者 Yong Fang Yunyun Zhang Cheng Huang 《Computers, Materials & Continua》 SCIE EI 2019年第7期185-195,共11页
In recent years,the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit.Credit card transactions take a salient role in nowadays’online transactions for its ... In recent years,the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit.Credit card transactions take a salient role in nowadays’online transactions for its obvious advantages including discounts and earning credit card points.So credit card fraudulence has become a target of concern.In order to deal with the situation,credit card fraud detection based on machine learning is been studied recently.Yet,it is difficult to detect fraudulent transactions due to data imbalance(normal and fraudulent transactions),for which Smote algorithm is proposed in order to resolve data imbalance.The assessment of Light Gradient Boosting Machine model which proposed in the paper depends much on datasets collected from clients’daily transactions.Besides,to prove the new model’s superiority in detecting credit card fraudulence,Light Gradient Boosting Machine model is compared with Random Forest and Gradient Boosting Machine algorithm in the experiment.The results indicate that Light Gradient Boosting Machine model has a good performance.The experiment in credit card fraud detection based on Light Gradient Boosting Machine model achieved a total recall rate of 99%in real dataset and fast feedback,which proves the new model’s efficiency in detecting credit card fraudulence. 展开更多
关键词 credit card fraud detection imbalanced data LightGBM model smote algorithm
下载PDF
Credit Card Fraud Detection Using Weighted Support Vector Machine 被引量:3
8
作者 Dongfang Zhang Basu Bhandari Dennis Black 《Applied Mathematics》 2020年第12期1275-1291,共17页
Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the verac... Credit card fraudulent data is highly imbalanced, and it has presented an overwhelmingly large portion of nonfraudulent transactions and a small portion of fraudulent transactions. The measures used to judge the veracity of the detection algorithms become critical to the deployment of a model that accurately scores fraudulent transactions taking into account case imbalance, and the cost of identifying a case as genuine when, in fact, the case is a fraudulent transaction. In this paper, a new criterion to judge classification algorithms, which considers the cost of misclassification, is proposed, and several undersampling techniques are compared by this new criterion. At the same time, a weighted support vector machine (SVM) algorithm considering the financial cost of misclassification is introduced, proving to be more practical for credit card fraud detection than traditional methodologies. This weighted SVM uses transaction balances as weights for fraudulent transactions, and a uniformed weight for nonfraudulent transactions. The results show this strategy greatly improve performance of credit card fraud detection. 展开更多
关键词 Support Vector Machine Binary Classification Imbalanced Data UNDERSAMPLING credit Card Fraud
下载PDF
Profitable credit card business empirical analysis of factors
9
作者 SHUAI Qing-hong SHI Yu-lu 《Chinese Business Review》 2009年第10期33-37,24,共6页
Since 1995, major domestic commercial banks are beginning to have a variety of credit cards issued. However, at present, China's relatively low profitability of the credit card business, it accounts for a smaller pro... Since 1995, major domestic commercial banks are beginning to have a variety of credit cards issued. However, at present, China's relatively low profitability of the credit card business, it accounts for a smaller proportion of total bank income. By means of credit card revenue/cost structure analysis, the authors found spending and overdraft balances affecting credit card business, an important factor in profitability. At the same time, combined with a commercial bank's existing statistical data, using SPSS software correlation and regression analysis, the authors found that the key to improve the bank card revenue is to raise China's commercial banks, credit card revolving credit utilization, and expand the scale of overdraft balances. 展开更多
关键词 credit card profit factor revenue/cost structure CORRELATION
下载PDF
Intelligent Financial Fraud Detection Using Artificial Bee Colony Optimization Based Recurrent Neural Network
10
作者 T.Karthikeyan M.Govindarajan V.Vijayakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1483-1498,共16页
Frauds don’t follow any recurring patterns.They require the use of unsupervised learning since their behaviour is continually changing.Fraud-sters have access to the most recent technology,which gives them the abilit... Frauds don’t follow any recurring patterns.They require the use of unsupervised learning since their behaviour is continually changing.Fraud-sters have access to the most recent technology,which gives them the ability to defraud people through online transactions.Fraudsters make assumptions about consumers’routine behaviour,and fraud develops swiftly.Unsupervised learning must be used by fraud detection systems to recognize online payments since some fraudsters start out using online channels before moving on to other techniques.Building a deep convolutional neural network model to identify anomalies from conventional competitive swarm optimization pat-terns with a focus on fraud situations that cannot be identified using historical data or supervised learning is the aim of this paper Artificial Bee Colony(ABC).Using real-time data and other datasets that are readily available,the ABC-Recurrent Neural Network(RNN)categorizes fraud behaviour and compares it to the current algorithms.When compared to the current approach,the findings demonstrate that the accuracy is high and the training error is minimal in ABC_RNN.In this paper,we measure the Accuracy,F1 score,Mean Square Error(MSE)and Mean Absolute Error(MAE).Our system achieves 97%accuracy,92%precision rate and F1 score 97%.Also we compare the simulation results with existing methods. 展开更多
关键词 Fraud activity OPTIMIZATION deep learning CLASSIFICATION online transaction neural network credit card
下载PDF
基于改进混合采样和XGBoost算法的信用卡欺诈检测方法 被引量:3
11
作者 孙丹 施炜利 +3 位作者 饶兰香 孟莎莎 郭晓明 李逸伦 《计算机与现代化》 2022年第9期111-118,共8页
随着金融机构信用卡业务的快速发展,信用卡欺诈行为成为金融机构面临的严峻问题。针对金融机构信用卡数据分布不均衡问题,本文采用过采样、降采样、SMOTE+ENN、SMOTE+Tomeklin、改进的SMOTE+Tomeklin和改进的SMOTE+ENN混合采样这6种不... 随着金融机构信用卡业务的快速发展,信用卡欺诈行为成为金融机构面临的严峻问题。针对金融机构信用卡数据分布不均衡问题,本文采用过采样、降采样、SMOTE+ENN、SMOTE+Tomeklin、改进的SMOTE+Tomeklin和改进的SMOTE+ENN混合采样这6种不同采样方法对不平衡数据进行平衡处理,然后将平衡数据集输入到多种分类算法模型中进行实验比对,最后提出一种基于改进的SMOTE+ENN混合采样和XGBoost算法的信用卡欺诈行为检测模型。通过5种评价指标验证该检测方法不仅提高了信用卡欺诈行为不平衡数据的区分度,同时提高了信用卡欺诈行为检测的准确性和可行性。 展开更多
关键词 SMOTE+ENN XGBoost算法 不平衡数据 credit Card Fraud Detection 评价指标
下载PDF
SOM approach for clustering customers using credit card transactions 被引量:2
12
作者 Seda Yanık Abdelrahman Elmorsy 《International Journal of Intelligent Computing and Cybernetics》 EI 2019年第3期372-388,共17页
Purpose–The purpose of this paper is to generate customer clusters using self-organizing map(SOM)approach,a machine learning technique with a big data set of credit card consumptions.The authors aim to use the consum... Purpose–The purpose of this paper is to generate customer clusters using self-organizing map(SOM)approach,a machine learning technique with a big data set of credit card consumptions.The authors aim to use the consumption patterns of the customers in a period of three months deducted from the credit card transactions,specifically the consumption categories(e.g.food,entertainment,etc.).Design/methodology/approach–The authors use a big data set of almost 40,000 credit card transactions to cluster customers.To deal with the size of the data set and the eliminated the required parametric assumptions the authors use a machine learning technique,SOMs.The variables used are grouped into three as demographical variables,categorical consumption variables and summary consumption variables.The variables are first converted to factors using principal component analysis.Then,the number of clusters is specified by k-means clustering trials.Then,clustering with SOM is conducted by only including the demographical variables and allvariables.Then,a comparisonis made and the significance of the variablesis examined by analysis of variance.Findings–The appropriate number of clusters is found to be 8 using k-means clusters.Then,the differences in categorical consumption levels are investigated between the clusters.However,they have been found to be insignificant,whereas the summary consumption variables are found to be significant between the clusters,as well as the demographical variables.Originality/value–The originality of the study is to incorporate the credit card consumption variables of customers to cluster the bank customers.The authors use a big data set and dealt with it with a machine learning technique to deduct the consumption patterns to generate the clusters.Credit card transactions generate a vast amount of data to deduce valuable information.It is mainly used to detect fraud in the literature.To the best of the authors’knowledge,consumption patterns obtained from credit card transaction are first used for clustering the customers in this study. 展开更多
关键词 PCA CLUSTERING Self-organizing maps K-MEANS credit card transactions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部