Credit risk is the core issue of supply chain finance. In the supply chain, problems happened in different enterprises can influent the whole to different degrees through transferring, thus statuses of all enterprises...Credit risk is the core issue of supply chain finance. In the supply chain, problems happened in different enterprises can influent the whole to different degrees through transferring, thus statuses of all enterprises and their different influences should be considered when evaluating the supply chain’s credit risk. We examine the characters of supply chain network and complex network, use the local growing complex network to simulate the real supply chain, use cluster analysis to classify the company into several levels;Introducing each level’s self-adaption weight formula according to the company’s quantity and degrees of this level and use the weight to improve the credit evaluation method. The research results indicate that complex network can be used to simulate the supply chain. The credit risk evaluation (CRE) of an enterprise level with bigger note degrees has a greater weight in the supply chain system’s CRE, thus has greater effect on the whole chain. Considering different influences of different enterprise levels can improve credit risk evaluation method’s sensitivity.展开更多
With the rapid development of big data technology, the personal credit evaluation industry has entered a new stage. Among them, the evaluation of personal credit based on mobile telecommunications data is one of the h...With the rapid development of big data technology, the personal credit evaluation industry has entered a new stage. Among them, the evaluation of personal credit based on mobile telecommunications data is one of the hotspots of current research. However, due to the complexity and diversity of personal credit evaluation variables, in order to reduce the complexity of the model and improve the prediction accuracy of the model, we need to reduce the dimension of the input variables. According to the data provided by a mobile telecommunications operator, this paper divides the data into a training sets and verification sets. We perform correlation analysis on each indicator of the data in the training set, and calculate the corresponding IV value based on the WOE value of the selected index, then binning data with SPSS Modeler. The selected variables were modeled using a logistic regression algorithm. In order to make the regression results more practical, we extract the scoring rules according to the results of logistic regression, convert them into the form of score cards, and finally verify the validity of the model.展开更多
文摘Credit risk is the core issue of supply chain finance. In the supply chain, problems happened in different enterprises can influent the whole to different degrees through transferring, thus statuses of all enterprises and their different influences should be considered when evaluating the supply chain’s credit risk. We examine the characters of supply chain network and complex network, use the local growing complex network to simulate the real supply chain, use cluster analysis to classify the company into several levels;Introducing each level’s self-adaption weight formula according to the company’s quantity and degrees of this level and use the weight to improve the credit evaluation method. The research results indicate that complex network can be used to simulate the supply chain. The credit risk evaluation (CRE) of an enterprise level with bigger note degrees has a greater weight in the supply chain system’s CRE, thus has greater effect on the whole chain. Considering different influences of different enterprise levels can improve credit risk evaluation method’s sensitivity.
文摘With the rapid development of big data technology, the personal credit evaluation industry has entered a new stage. Among them, the evaluation of personal credit based on mobile telecommunications data is one of the hotspots of current research. However, due to the complexity and diversity of personal credit evaluation variables, in order to reduce the complexity of the model and improve the prediction accuracy of the model, we need to reduce the dimension of the input variables. According to the data provided by a mobile telecommunications operator, this paper divides the data into a training sets and verification sets. We perform correlation analysis on each indicator of the data in the training set, and calculate the corresponding IV value based on the WOE value of the selected index, then binning data with SPSS Modeler. The selected variables were modeled using a logistic regression algorithm. In order to make the regression results more practical, we extract the scoring rules according to the results of logistic regression, convert them into the form of score cards, and finally verify the validity of the model.