Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 b...Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.展开更多
A study is conducted on the creep behaviour of T300/5222 compositelaminate by expenmental and theoretical researches. Experimental results of creep,stress relaxation and historydependent stress-strain curves at differ...A study is conducted on the creep behaviour of T300/5222 compositelaminate by expenmental and theoretical researches. Experimental results of creep,stress relaxation and historydependent stress-strain curves at different temperaturelevels are reported. Both loading and unloading processes are included. The locally av-eraged constitutive functionals are established on the basis of rational theimodynamics.Finally, a non-linear creep constitutive equation is constructed using the experimentaldata.展开更多
Previous constitutive models of granite shear creep have two limitations:(1) although moisture greatly affects granite shear creep behavior, currently there are no constitutive models that include this factor;(2)...Previous constitutive models of granite shear creep have two limitations:(1) although moisture greatly affects granite shear creep behavior, currently there are no constitutive models that include this factor;(2) there are also no models that include an acceleration stage. This paper presents an improved Burgers constitutive model with the addition of a damage parameter to characterize the moisture effect and uses a nonlinear relation equation between stress and strain for inclusion as the acceleration stage. The damage parameter is determined from granite creep experiment under four different moisture contents(0%, 0.22%, 0.49%, and 0.79%). The nonlinear relation equation is obtained by fitting a dataset of stain versus time under five different loading stages. To verify the presented model, a creep experiment was conducted on other granite samples and the results show that the model agrees well with the experimental observation data.展开更多
A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain ...A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.展开更多
基金Project(12JCYBJC32100)supported by the Tianjin Research Program of Application Foundation and Advanced Technology,ChinaProject([2013]693)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.
文摘A study is conducted on the creep behaviour of T300/5222 compositelaminate by expenmental and theoretical researches. Experimental results of creep,stress relaxation and historydependent stress-strain curves at different temperaturelevels are reported. Both loading and unloading processes are included. The locally av-eraged constitutive functionals are established on the basis of rational theimodynamics.Finally, a non-linear creep constitutive equation is constructed using the experimentaldata.
基金supported by the National Natural Science Foundation of China (No. 41172281)the National Basic Research Program of China (No. 2011CB710604)the Opening Foundation of the State Key Laboratory of Continental Dynamics, Northwest University (No. 201210126)
文摘Previous constitutive models of granite shear creep have two limitations:(1) although moisture greatly affects granite shear creep behavior, currently there are no constitutive models that include this factor;(2) there are also no models that include an acceleration stage. This paper presents an improved Burgers constitutive model with the addition of a damage parameter to characterize the moisture effect and uses a nonlinear relation equation between stress and strain for inclusion as the acceleration stage. The damage parameter is determined from granite creep experiment under four different moisture contents(0%, 0.22%, 0.49%, and 0.79%). The nonlinear relation equation is obtained by fitting a dataset of stain versus time under five different loading stages. To verify the presented model, a creep experiment was conducted on other granite samples and the results show that the model agrees well with the experimental observation data.
基金Project(2009CB724307)supported by the Major State Basic Research Development Program(973 Program)of China
文摘A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.