To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin...To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.展开更多
Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson rati...Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson ratio v(f)) and creep parameters (CCREEP^(f) and nCREEP^(f)) for a simple Norton law (ε=CCREEP^(f)σ^n CREE^(f), where e is creep strain rate, and a is the stress) material for a thin film coated on a creep substrate, whose elastic properties(E^(s) and v^(s)) and creep properties (CCREEP^(s) and nCREEP^(s)) of the substrate are known, from indentation elastic and creep testing,respectively. The influences of the thickness of the thin-film and the size of the indenter on the indentation behavior have been discussed. It is shown that the boundary between the thin film and the substrate has great influence on the indentation creep behavior. The relative sizes of indentation systems are chosen so that the behavior of the indentation on the film is influenced by the substrate. The two elastic parameters E^(f) and v^(f) of the film are coupled on the influence of the elastic behavior of indentation. With the two different size indenters, the two elastic parameters E^(f) and v^(f) of the film can be uniquely determined by the indentation experimental slopes of depth to applied net section stress results. The procedure of determining of the two Norton law parameters CCREEP^(f) and nCREEP^(f) includes the following steps by the steady indentation rate d. The first step to calculate the creep indentation rate on certain loads of the two different sizes of indenters on a set of assumed values of CCREEP^(f) and nCREEP^(f)Then to build relationship between the creep indentation rate and the assumed CCREEP^(f) and nCREEP^(f) With the experimental creep indentation rate to intersect two sets of which have the same values of d. The last step is to build the CCREEP^(f) and nCREEP^(f)curves from the intersection points for the two indenters. These two curves CCREEP^(f) and nCREEP^(f)展开更多
The lithology of the strata in the Gobi region of the Xinjiang autonomous region of China is mainly composed of mudstone,silty mudstone,and other soft rocks.Because of the low strength of the rock mass and the serious...The lithology of the strata in the Gobi region of the Xinjiang autonomous region of China is mainly composed of mudstone,silty mudstone,and other soft rocks.Because of the low strength of the rock mass and the serious effects of physical weathering in this area,the slope stability in open-pit mines is poor,and creep deformation and instability can readily occur.Taking the Dananhu No.2 open-pit mine as a typical example,the creep test of a mudstone sample under different stress levels was studied.Then,based on a bottom friction experiment and a FLAC3D numerical simulation,the deformation and failure processes of the slope were analyzed.The stress–displacement curve and the displacement–time curve for the monitoring points were plotted to obtain the relationship between the stress and displacement for the slope of the soft rock.The results showed that the long-term strength of the mudstone was between 8.0 and 8.8 MPa,and that stable creep occurred when the slope was under low stress.The potential failure mode for this type of slope is that the front edge creeps along the weak layer and then a crack is formed at the trailing edge of the slope.When the crack penetrates the weak layer,cutting bedding and bedding sliding occur.The deformation process of the stable creep slope includes an initial deformation stage,an initial creep stage,a constant velocity creep stage and a deceleration creep stage.展开更多
Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the...Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the creep strain is composed of instantaneous elastic strain,ε(me),instantaneous plastic strain,ε(mp),viscoelastic strain,ε(ce),and viscoplastic strain,ε(cp).Based on the characteristics of instantaneous plastic strain,a new element of instantaneous plastic rheology was introduced,instantaneous plastic modulus was defined,and the modified Burgers model was established.Then identification of direct screening method in this model was completed.According to the mechanical properties of rheological elements,one- and three-dimensional creep equations in different stress levels were obtained.One-dimensional model parameters were identified by the method of least squares,and in the process of computation,Gauss-Newton iteration method was applied.Finally,by fitting the experimental curves,the correctness of direct method model was verified,then the examination of posterior exclusive method of the model was accomplished.The results showed that in the improved Burgers models,the rheological characteristics of sandstone are embodied properly,microscopic analysis of creep curves is also achieved,and the correctness of comprehensive identification method of rheological model is verified.展开更多
On the bases of high temperature creep experiments, the research on engineering application of rheological forming is carried out on two kinds of light metal alloy parts named cylindrical shell of Lc4 aluminum alloy a...On the bases of high temperature creep experiments, the research on engineering application of rheological forming is carried out on two kinds of light metal alloy parts named cylindrical shell of Lc4 aluminum alloy and vane disk with complex curved surface of TC11 titanium alloy. Moreover, the mechanical property tests under room and high temperatures for the workpieces produced by this new technique are also done, the results showed that they are much improved evidently compared with those produced by traditional method.展开更多
基金This research was financially supported by the Scientific and technological research projects in Sichuan province(Grant Nos.2022YFSY0007 and 2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.
基金the Alexander von Humboldt FOundation. GE would liketo aCknowledge funding from Deutsche Forschungsgemeinschaft (SFB 526: Rheo
文摘Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson ratio v(f)) and creep parameters (CCREEP^(f) and nCREEP^(f)) for a simple Norton law (ε=CCREEP^(f)σ^n CREE^(f), where e is creep strain rate, and a is the stress) material for a thin film coated on a creep substrate, whose elastic properties(E^(s) and v^(s)) and creep properties (CCREEP^(s) and nCREEP^(s)) of the substrate are known, from indentation elastic and creep testing,respectively. The influences of the thickness of the thin-film and the size of the indenter on the indentation behavior have been discussed. It is shown that the boundary between the thin film and the substrate has great influence on the indentation creep behavior. The relative sizes of indentation systems are chosen so that the behavior of the indentation on the film is influenced by the substrate. The two elastic parameters E^(f) and v^(f) of the film are coupled on the influence of the elastic behavior of indentation. With the two different size indenters, the two elastic parameters E^(f) and v^(f) of the film can be uniquely determined by the indentation experimental slopes of depth to applied net section stress results. The procedure of determining of the two Norton law parameters CCREEP^(f) and nCREEP^(f) includes the following steps by the steady indentation rate d. The first step to calculate the creep indentation rate on certain loads of the two different sizes of indenters on a set of assumed values of CCREEP^(f) and nCREEP^(f)Then to build relationship between the creep indentation rate and the assumed CCREEP^(f) and nCREEP^(f) With the experimental creep indentation rate to intersect two sets of which have the same values of d. The last step is to build the CCREEP^(f) and nCREEP^(f)curves from the intersection points for the two indenters. These two curves CCREEP^(f) and nCREEP^(f)
基金The work was Supported by State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing(No.SKLGDUEK1923)National Key Research and Development Program(No.2018YFC0808301).
文摘The lithology of the strata in the Gobi region of the Xinjiang autonomous region of China is mainly composed of mudstone,silty mudstone,and other soft rocks.Because of the low strength of the rock mass and the serious effects of physical weathering in this area,the slope stability in open-pit mines is poor,and creep deformation and instability can readily occur.Taking the Dananhu No.2 open-pit mine as a typical example,the creep test of a mudstone sample under different stress levels was studied.Then,based on a bottom friction experiment and a FLAC3D numerical simulation,the deformation and failure processes of the slope were analyzed.The stress–displacement curve and the displacement–time curve for the monitoring points were plotted to obtain the relationship between the stress and displacement for the slope of the soft rock.The results showed that the long-term strength of the mudstone was between 8.0 and 8.8 MPa,and that stable creep occurred when the slope was under low stress.The potential failure mode for this type of slope is that the front edge creeps along the weak layer and then a crack is formed at the trailing edge of the slope.When the crack penetrates the weak layer,cutting bedding and bedding sliding occur.The deformation process of the stable creep slope includes an initial deformation stage,an initial creep stage,a constant velocity creep stage and a deceleration creep stage.
基金Projects (51174228,51274249) supported by the National Natural Science Foundation of China
文摘Based on the uniaxial compression creep experiments conducted on bauxite sandstone obtained from Sanmenxia,typical creep experiment curves were obtained.From the characteristics of strain component of creep curves,the creep strain is composed of instantaneous elastic strain,ε(me),instantaneous plastic strain,ε(mp),viscoelastic strain,ε(ce),and viscoplastic strain,ε(cp).Based on the characteristics of instantaneous plastic strain,a new element of instantaneous plastic rheology was introduced,instantaneous plastic modulus was defined,and the modified Burgers model was established.Then identification of direct screening method in this model was completed.According to the mechanical properties of rheological elements,one- and three-dimensional creep equations in different stress levels were obtained.One-dimensional model parameters were identified by the method of least squares,and in the process of computation,Gauss-Newton iteration method was applied.Finally,by fitting the experimental curves,the correctness of direct method model was verified,then the examination of posterior exclusive method of the model was accomplished.The results showed that in the improved Burgers models,the rheological characteristics of sandstone are embodied properly,microscopic analysis of creep curves is also achieved,and the correctness of comprehensive identification method of rheological model is verified.
基金supported by the National Personnel Department for returned talents(lincaipeizi[2001]30#)the Education Ministry of China for the university with doctoral discipline (No. 200805380004)
文摘On the bases of high temperature creep experiments, the research on engineering application of rheological forming is carried out on two kinds of light metal alloy parts named cylindrical shell of Lc4 aluminum alloy and vane disk with complex curved surface of TC11 titanium alloy. Moreover, the mechanical property tests under room and high temperatures for the workpieces produced by this new technique are also done, the results showed that they are much improved evidently compared with those produced by traditional method.