The density of asphalt was measured with the pycnometer and densitometer. Creep properties of the asphalt were investigated with the bending beam rheometer at temperatures ranging from 0 ~C to -36 ~C. The asphalt dens...The density of asphalt was measured with the pycnometer and densitometer. Creep properties of the asphalt were investigated with the bending beam rheometer at temperatures ranging from 0 ~C to -36 ~C. The asphalt density data used to correlate with the creep properties were calculated from the regression equation of density and temperature. The asphalt sample used to determine the creep property was aged by the standard RTFOT test and the PAV test. The test results showed that the asphalt density had a linear relationship with temperature changes. The logarithm of the creep stiffness and the slope of the logarithm of the stiffness at 60 seconds all demonstrated a linear relationship with the density, and the regression coefficient of these data was around 0.99. The creep stiffness and the slope of the creep stiffness can be calculated from the asphalt density at the same temperature.展开更多
The little stiffness modulus, high voidage and long curing time has limited the use of CBEM's (cold bituminous emulsion mixtures) in road and highways to pavement experiencing low traffic. The aim of this study is ...The little stiffness modulus, high voidage and long curing time has limited the use of CBEM's (cold bituminous emulsion mixtures) in road and highways to pavement experiencing low traffic. The aim of this study is to improve the properties of gap graded CRA (cold rolled asphal0 containing OPC (ordinary portland cement) as filler by addition of a by-product material as an activator. OPC was added to the CRA as a replacement to the conventional mineral filler (0%-100%), while LJMUA (Liverpool John Moores University Activator) was added as an additive in the range from 0%-3% by total mass of aggregate. Laboratory tests included stiffness modulus and uniaxial creep test to assess the mechanical properties. The results have shown a considerable improvement in the mechanical properties from the addition of LJMUA to the CRA containing OPC especially for the early life stiffness modulus that is the main disadvantage of the cold mixtures.展开更多
文摘The density of asphalt was measured with the pycnometer and densitometer. Creep properties of the asphalt were investigated with the bending beam rheometer at temperatures ranging from 0 ~C to -36 ~C. The asphalt density data used to correlate with the creep properties were calculated from the regression equation of density and temperature. The asphalt sample used to determine the creep property was aged by the standard RTFOT test and the PAV test. The test results showed that the asphalt density had a linear relationship with temperature changes. The logarithm of the creep stiffness and the slope of the logarithm of the stiffness at 60 seconds all demonstrated a linear relationship with the density, and the regression coefficient of these data was around 0.99. The creep stiffness and the slope of the creep stiffness can be calculated from the asphalt density at the same temperature.
文摘The little stiffness modulus, high voidage and long curing time has limited the use of CBEM's (cold bituminous emulsion mixtures) in road and highways to pavement experiencing low traffic. The aim of this study is to improve the properties of gap graded CRA (cold rolled asphal0 containing OPC (ordinary portland cement) as filler by addition of a by-product material as an activator. OPC was added to the CRA as a replacement to the conventional mineral filler (0%-100%), while LJMUA (Liverpool John Moores University Activator) was added as an additive in the range from 0%-3% by total mass of aggregate. Laboratory tests included stiffness modulus and uniaxial creep test to assess the mechanical properties. The results have shown a considerable improvement in the mechanical properties from the addition of LJMUA to the CRA containing OPC especially for the early life stiffness modulus that is the main disadvantage of the cold mixtures.