期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Three-dimensional nonlinear analysis of creep in concrete filled steel tube columns 被引量:1
1
作者 程晓东 李广宇 叶贵如 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期826-835,共10页
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th... This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design. 展开更多
关键词 Three-dimensional virtual laminated element (3D-VLE) Creep analysis Three-dimensional viscoelastic theory Three-parameters viscoelastic model Concrete filled steel tube columns
下载PDF
DETERMINATION OF CREEP PARAMETERS FROM INDENTATION CREEP EXPERIMENTS 被引量:1
2
作者 岳珠峰 万建松 吕震宙 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第3期307-317,共11页
The possibilities of determining creep parameters for a simple Norton law material are explored from indentation creep testing. Using creep finite element analysis the creep indentation test technique is analyzed in t... The possibilities of determining creep parameters for a simple Norton law material are explored from indentation creep testing. Using creep finite element analysis the creep indentation test technique is analyzed in terms of indentation rates at constant loads. Emphasis is placed on the relationships between the steady creep behavior of indentation systems and the creep property of the indented materials. The role of indenter geometry, size effects and macroscopic constraints is explicitly considered on indentation creep experiments. The influence of macroscopic constraints from the material systems becomes important when the size of the indenter is of the same order of magnitude as the size of the testing material. Two methods have been presented to assess the creep property of the indented material from the indentation experimental results on the single-phase-material and two-phase-material systems. The results contribute to a better mechanical understanding and extending the application of indentation creep testing. 展开更多
关键词 indentation creep testing finite element creep stress analysis determination of creep parameters single-phase-material system two-phase-material system
下载PDF
INFLUENCE OF DWELL TIME ON HIGH TEM-PERATURE LOW CYCLE FATIGUE (HTLCF) BEHAVIOR IN AN Nd-BEARING NEAR-α TITANIUM ALLOY
3
作者 Zhu Zhishou, Cao Chunxiao, Ma Jimin, Gao Yang, Yan Minggao (Beijing Institute of Aeronautical Materials, Beijing, 100095, China) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第3期42-47,共6页
The influences of strain amplitude ranges and dwell time at peak strains on the low cycle fatigue (LCF) properties at 600℃ of a new near α high temperature titanium alloy containing rare earth Nd are investigated. ... The influences of strain amplitude ranges and dwell time at peak strains on the low cycle fatigue (LCF) properties at 600℃ of a new near α high temperature titanium alloy containing rare earth Nd are investigated. The creep fatigue interaction behavior is discussed in this paper in terms of a creep fatigue interaction cumulative law and fatigue crack propagation model. The results show that the creep fatigue interaction is largely dependent on the strain amplitude range, and the tensile dwell periods, as well as compressive dwell periods, have a great influence on the LCF life of this alloy. 展开更多
关键词 creep analysis fatigue (materials) titanium alloys dwell time low cycle fatigue (LCF)
下载PDF
DETERMINATION OF CREEP PROPERTIES OF THERMAL BARRIER COATING(TBC)SYSTEMS FROM THE INDENTATION CREEP TESTING WITH ROUND FLAT INDENTERS
4
作者 B.Zhao B.X.Xu +1 位作者 J.Liu Z.F.Yue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期503-508,共6页
Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rat... Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rate for each case studied for different creep properties of the TBC system. The steady creep depth rate depends on the applied indentation creep stress and size of the indenters as well as the creep properties of the bond coat of the TBC and the substrate. The possibilities to determine the creep properties of a thermal barrier system from indention creep testing were discussed. As an example, with two different size indenters, the creep properties of bond coat of the TBC system can be derived by an inverse FEM method. This study not only provides a numerical method to obtain the creep properties of the TBC system, but also extends the application of indentation creep method with cylindrical flat indenters. 展开更多
关键词 thermal barrier coating (TBC) system indention creep testing finite element creep analysis determination of creep parameters bond coat
下载PDF
Influence of Temperature on Stacking Fault Energy and Creep Mechanism of a Single Crystal Nickel-based Superalloy 被引量:9
5
作者 Sugui Tian Xinjie Zhu +3 位作者 Jing Wu Huichen Yu Delong Shu Benjiang Qian 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期790-798,共9页
The influence of temperatures on the stacking fault energies and deformation mechanism of a Re- containing single crystal nickel-based superalloy during creep at elevated temperatures was investigated by means of calc... The influence of temperatures on the stacking fault energies and deformation mechanism of a Re- containing single crystal nickel-based superalloy during creep at elevated temperatures was investigated by means of calculating the stacking fault energy of alloy, measuring creep properties and performing contrast analysis of dislocation configuration. The results show that the alloy at 760 ℃ possesses lower stacking fault energy, and the stacking fault of alloy increases with increasing temperature. The defor- mation mechanism of alloy during creep at 760 ℃ is 7' phase sheared by 〈110〉 super-dislocations, which may be decomposed to form the configuration of Shockley partials plus super-lattice intrinsic stacking fault, while the deformation mechanism of alloy during creep at 1070 ℃ is the screw or edge super- dislocations shearing into the rafted 7' phase. But during creep at 7(50 and 980 ℃, some super- dislocations shearing into 7' phase may cross-slip from the {111} to {100} planes to form the K-W locks with non-plane core structure, which may restrain the dislocations slipping to enhance the creep resis- tance of alloy at high temperature. The interaction between the Re and other elements may decrease the diffusion rate of atoms to improve the microstructure stability, which is thought to be the main reason why the K-W locks are to be kept in the Re-containing superalloy during creep at 980 ℃. 展开更多
关键词 Single crystal nickel-based superalloy Stacking fault energy Creep Contrast analysis Deformation mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部