Reliable estimation of region-wide rice yield is vital for food security and agricultural management.Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental...Reliable estimation of region-wide rice yield is vital for food security and agricultural management.Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions.However,they offer little infor-mation on spatial variability effects on farm-scale yield.Remote Sensing(RS)is a useful tool to upscale yield estimates from farm scales to regional levels.Much research used RS with rice models for reliable yield estimation.As several countries start to operatio-nalize rice monitoring systems,it is needed to synthesize current literature to identify knowledge gaps,to improve estimation accuracies,and to optimize processing.This paper critically reviewed significant developments in using geospatial methods,imagery,and quantitative models to estimate rice yield.First,essential characteristics of rice were discussed as detected by optical and radar sensors,band selection,sensor configuration,spatial resolution,mapping methods,and biophysical variables of rice derivable from RS data.Second,various empirical,process-based,and semi-empirical models that used RS data for spatial estimation of yield were critically assessed-discussing how major types of models,RS platforms,data assimilation algorithms,canopy state variables,and RS variables can be integrated for yield estimation.Lastly,to overcome current constraints and to improve accuracies,several possibilities were suggested-adding new modeling modules,using alternative canopy variables,and adopting novel modeling approaches.As rice yields are expected to decrease due to global warming,geospatial rice yield estimation techniques are indispensable tools for climate change assessments.Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars,by incorporating dynamic harvesting indices based on climatic drivers,using innovative modeling approaches with machine learning.展开更多
为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和S...为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和SWAP模拟LAI、ET趋势变化信息构建代价函数,以SCE-UA作为优化算法最小化代价函数,重新初始化SWAP模型中的出苗日期和灌溉量2个参数。重点比较了基于向量夹角和一阶差分2种代价函数的冬小麦单产估测精度。结果表明,同化MODIS LAI和ET后,冬小麦产量的估测精度比未同化精度(r=0.57,RMSE=1 192 kg/hm2)有显著提高,并且基于向量夹角代价函数法同化策略的单产估测精度(r=0.75,RMSE=494 kg/hm2)高于一阶差分代价函数法(r=0.73,RMSE=667 kg/hm2)的估测精度。该方法为其他区域的水分胁迫模式下遥感与作物模型双变量数据同化提供了参考。展开更多
为提高陕西省关中平原冬小麦的估产精度,该文通过粒子滤波算法同化Landsat遥感数据反演的状态量叶面积指数(leaf area index,LAI)、土壤含水量(0~20 cm)、地上干生物量数据和CERES-Wheat模型模拟的状态量数据,分析小麦不同生育期的LAI...为提高陕西省关中平原冬小麦的估产精度,该文通过粒子滤波算法同化Landsat遥感数据反演的状态量叶面积指数(leaf area index,LAI)、土壤含水量(0~20 cm)、地上干生物量数据和CERES-Wheat模型模拟的状态量数据,分析小麦不同生育期的LAI、土壤含水量及生物量同化值和实测单产的线性相关性,以构建同化估产模型。结果表明,在返青期土壤含水量同化值和实测单产的相关性高于LAI、生物量同化值和实测单产的相关性,选择土壤含水量作为最优变量;在拔节期和抽穗-灌浆期同时选择LAI、土壤含水量及生物量作为最优变量;在乳熟期选择生物量作为最优变量。在小麦各生育时期同化最优变量的估产精度(R2=0.85)高于同时同化LAI、土壤含水量及生物量的估产精度,同时同化LAI、土壤含水量及生物量的估产精度高于同时同化LAI和土壤含水量(或LAI和地上干生物量、或土壤含水量和地上干生物量)的估产精度,表明在作物不同生育时期同化与产量相关性较大的变量对提高估产精度有重要作用。展开更多
为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结...为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。展开更多
实时获取农作物长势及产量等信息对于现代农业的发展具有重要意义。近年来,随着遥感技术(remote sensing,RS)和地理信息系统(geographic information system,GIS)广泛应用于农作物估产领域,相继出现了一些较为实用的估产方法,主要有结...实时获取农作物长势及产量等信息对于现代农业的发展具有重要意义。近年来,随着遥感技术(remote sensing,RS)和地理信息系统(geographic information system,GIS)广泛应用于农作物估产领域,相继出现了一些较为实用的估产方法,主要有结合辅助数据的估产方法、基于植被指数的估产方法、基于特定模型的估产方法和基于农作物估产平台(软件)的开发等。其中,基于植被指数的估产方法又分为单一和多植被指数估产2类方法。在对近年来该领域大量文献深入研究的基础上,着重就几类热点方法展开论述,并对每类方法的优势和缺陷进行了评述,最后对该领域需要进一步研究的方向进行了探讨和展望,以期为后续研究提供参考。展开更多
基金This work is supported by New Zealand Ministry of Foreign Affairs and Trade PhD Scholarship and the University of Auckland’s Postgraduate Research Student SupportMinistry of Foreign Affairs and Trade,New Zealand,University of Auckland.
文摘Reliable estimation of region-wide rice yield is vital for food security and agricultural management.Field-scale models have increased our understanding of rice yield and its estimation under theoretical environmental conditions.However,they offer little infor-mation on spatial variability effects on farm-scale yield.Remote Sensing(RS)is a useful tool to upscale yield estimates from farm scales to regional levels.Much research used RS with rice models for reliable yield estimation.As several countries start to operatio-nalize rice monitoring systems,it is needed to synthesize current literature to identify knowledge gaps,to improve estimation accuracies,and to optimize processing.This paper critically reviewed significant developments in using geospatial methods,imagery,and quantitative models to estimate rice yield.First,essential characteristics of rice were discussed as detected by optical and radar sensors,band selection,sensor configuration,spatial resolution,mapping methods,and biophysical variables of rice derivable from RS data.Second,various empirical,process-based,and semi-empirical models that used RS data for spatial estimation of yield were critically assessed-discussing how major types of models,RS platforms,data assimilation algorithms,canopy state variables,and RS variables can be integrated for yield estimation.Lastly,to overcome current constraints and to improve accuracies,several possibilities were suggested-adding new modeling modules,using alternative canopy variables,and adopting novel modeling approaches.As rice yields are expected to decrease due to global warming,geospatial rice yield estimation techniques are indispensable tools for climate change assessments.Future studies should focus on resolving the current limitations of estimation by precise delineation of rice cultivars,by incorporating dynamic harvesting indices based on climatic drivers,using innovative modeling approaches with machine learning.
文摘为提高陕西省关中平原冬小麦的估产精度,该文通过粒子滤波算法同化Landsat遥感数据反演的状态量叶面积指数(leaf area index,LAI)、土壤含水量(0~20 cm)、地上干生物量数据和CERES-Wheat模型模拟的状态量数据,分析小麦不同生育期的LAI、土壤含水量及生物量同化值和实测单产的线性相关性,以构建同化估产模型。结果表明,在返青期土壤含水量同化值和实测单产的相关性高于LAI、生物量同化值和实测单产的相关性,选择土壤含水量作为最优变量;在拔节期和抽穗-灌浆期同时选择LAI、土壤含水量及生物量作为最优变量;在乳熟期选择生物量作为最优变量。在小麦各生育时期同化最优变量的估产精度(R2=0.85)高于同时同化LAI、土壤含水量及生物量的估产精度,同时同化LAI、土壤含水量及生物量的估产精度高于同时同化LAI和土壤含水量(或LAI和地上干生物量、或土壤含水量和地上干生物量)的估产精度,表明在作物不同生育时期同化与产量相关性较大的变量对提高估产精度有重要作用。
文摘为了将遥感观测到的玉米生长期间作物冠层方向反射波谱的时间序列变化信息用于区域玉米产量估算,该文将时间序列中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)数据和高空间分辨率LandsatTM遥感观测数据相结合,以叶面积指数(LAI)作为耦合作物生长模型(crop environment resource synthesis-Maize,CERES-Maize)和植被冠层反射率模型(scattering by arbitrarily inclined leaves,SAIL)的关键参数,提出了将耦合模型与时间序列遥感观测数据同化进行区域玉米产量估算的方案。该文选择吉林省榆树市为研究区,采用MODIS和LandsatTM2种尺度数据集,利用SCE-UA(shuffled complex evolution method developed at the University of Arizona)算法分别进行玉米产量同化估产研究,得到玉米单产空间分布的估计结果,结合遥感估算的种植面积求算榆树市玉米总产量。结果表明,与玉米统计总产量相比,2007、2008和2009年遥感数据同化估算的总产量误差分别为9.15%、14.99%和8.97%;与仅利用CERES-Maize模型模拟得到的产量误差相比,3a间遥感估算总产量的误差分别减小了7.49%、1.21%和5.23%,且采用MODIS和TM遥感数据估算的玉米产量表现了其空间差异性。利用榆树市3a间玉米产量的明显差异,分析了时序遥感数据对作物长势和产量变化信息的表达能力,同年份内时序归一化差值植被指数越大,对应的玉米产量越高;年际间遥感观测反射率的差异通过数据同化方法能够反映年际间玉米产量差的变化。该文提出的玉米估产方案为将来进一步结合多源遥感数据、植被冠层反射率模型与作物生长模型进行区域玉米估产研究提供了参考。
文摘实时获取农作物长势及产量等信息对于现代农业的发展具有重要意义。近年来,随着遥感技术(remote sensing,RS)和地理信息系统(geographic information system,GIS)广泛应用于农作物估产领域,相继出现了一些较为实用的估产方法,主要有结合辅助数据的估产方法、基于植被指数的估产方法、基于特定模型的估产方法和基于农作物估产平台(软件)的开发等。其中,基于植被指数的估产方法又分为单一和多植被指数估产2类方法。在对近年来该领域大量文献深入研究的基础上,着重就几类热点方法展开论述,并对每类方法的优势和缺陷进行了评述,最后对该领域需要进一步研究的方向进行了探讨和展望,以期为后续研究提供参考。