The objective of crime prediction,one of the most important technologies in social computing,is to extract useful information from many existing criminal records to predict the next process-related crime.It can aid th...The objective of crime prediction,one of the most important technologies in social computing,is to extract useful information from many existing criminal records to predict the next process-related crime.It can aid the police in obtaining criminal information and warn the public to be vigilant in certain areas.With the rapid growth of big data,the Internet of Things,and other technologies,as well as the increasing use of artificial intelligence in forecasting models,crime prediction models based on deep learning techniques are accelerating.Therefore,it is necessary to classify the existing crime prediction algorithms and compare in depth the attributes and conditions that play an essential role in the analysis of crime prediction algorithms.Existing crime prediction methods can be roughly divided into two categories:those based on conventional machine learning and those based on contemporary deep learning.This survey analyses the fundamental theories and procedures.The most frequently used data sets are then enumerated,and the fundamental procedures of various algorithms are also analyzed in this paper.In light of the insufficient scale of existing data in this field,the ambiguity of data types used to predict crimes,and the absence of public data sets that have a significant impact on the research of algorithm models,this survey proposes the construction of a machine learning-based big data research model to address these issues.Future researchers who will enter this field are provided with a guide to the direction of future research development.展开更多
A good machine learning model would greatly contribute to an accurate crime prediction. Thus, researchers select advanced models more frequently than basic models. To find out whether advanced models have a prominent ...A good machine learning model would greatly contribute to an accurate crime prediction. Thus, researchers select advanced models more frequently than basic models. To find out whether advanced models have a prominent advantage, this study focuses shift from obtaining crime prediction to on comparing model performance between these two types of models on crime prediction. In this study, we aimed to predict burglary occurrence in Los Angeles City, and compared a basic model just using prior year burglary occurrence with advanced models including linear regressor and random forest regressor. In addition, American Community Survey data was used to provide neighborhood level socio-economic features. After finishing data preprocessing steps that regularize the dataset, recursive feature elimination was utilized to determine the final features and the parameters of the two advanced models. Finally, to find out the best fit model, three metrics were used to evaluate model performance: R squared, adjusted R squared and mean squared error. The results indicate that linear regressor is the most suitable model among three models applied in the study with a slightly smaller mean squared error than that of basic model, whereas random forest model performed worse than the basic model. With a much more complex learning steps, advanced models did not show prominent advantages, and further research to extend the current study were discussed.展开更多
Crimes are expected to rise with an increase in population and the rising gap between society’s income levels.Crimes contribute to a significant portion of the socioeconomic loss to any society,not only through its i...Crimes are expected to rise with an increase in population and the rising gap between society’s income levels.Crimes contribute to a significant portion of the socioeconomic loss to any society,not only through its indirect damage to the social fabric and peace but also the more direct negative impacts on the economy,social parameters,and reputation of a nation.Policing and other preventive resources are limited and have to be utilized.The conventional methods are being superseded by more modern approaches of machine learning algorithms capable of making predictions where the relationships between the features and the outcomes are complex.Making it possible for such algorithms to provide indicators of specific areas that may become criminal hot-spots.These predictions can be used by policymakers and police personals alike to make effective and informed strategies that can curtail criminal activities and contribute to the nation’s development.This paper aims to predict factors that most affected crimes in Saudi Arabia by developing a machine learning model to predict an acceptable output value.Our results show that FAMD as features selection methods showed more accuracy on machine learning classifiers than the PCA method.The naïve Bayes classifier performs better than other classifiers on both features selections methods with an accuracy of 97.53%for FAMD,and PCA equals to 97.10%.展开更多
There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We defi...There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We define resolution of crime as a target variable and study its relationship with other variables. We make several classification models to predict resolution of crime using several data mining techniques and suggest the best model for predicting resolution.展开更多
This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,location...This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,locations,communication,and spatiotemporal characters on different social media groups,the proposed architecture will spawn beneficial information.This useful information will,in turn,help the police both in predicting potential terrorist events and in investigating previous events.Furthermore,this architecture will aid in the identification of criminals and their associates and handlers.Terrorism is psychological warfare,which,in the broadest sense,can be defined as the utilisation of deliberate violence for economic,political or religious purposes.In this study,a supervised learning-based approach was adopted to develop the proposed architecture.The dataset was prepared from the suicide bomb blast data of Pakistan obtained from the South Asia Terrorism Portal(SATP).As the proposed architecture was simulated,the supervised learning-based classifiers na飗e Bayes and Hoeffding Tree reached 72.17%accuracy.One of the additional benefits this study offers is the ability to predict the target audience of potential suicide bomb blasts,which may be used to eliminate future threats or,at least,minimise the number of casualties and other property losses.展开更多
文摘The objective of crime prediction,one of the most important technologies in social computing,is to extract useful information from many existing criminal records to predict the next process-related crime.It can aid the police in obtaining criminal information and warn the public to be vigilant in certain areas.With the rapid growth of big data,the Internet of Things,and other technologies,as well as the increasing use of artificial intelligence in forecasting models,crime prediction models based on deep learning techniques are accelerating.Therefore,it is necessary to classify the existing crime prediction algorithms and compare in depth the attributes and conditions that play an essential role in the analysis of crime prediction algorithms.Existing crime prediction methods can be roughly divided into two categories:those based on conventional machine learning and those based on contemporary deep learning.This survey analyses the fundamental theories and procedures.The most frequently used data sets are then enumerated,and the fundamental procedures of various algorithms are also analyzed in this paper.In light of the insufficient scale of existing data in this field,the ambiguity of data types used to predict crimes,and the absence of public data sets that have a significant impact on the research of algorithm models,this survey proposes the construction of a machine learning-based big data research model to address these issues.Future researchers who will enter this field are provided with a guide to the direction of future research development.
文摘A good machine learning model would greatly contribute to an accurate crime prediction. Thus, researchers select advanced models more frequently than basic models. To find out whether advanced models have a prominent advantage, this study focuses shift from obtaining crime prediction to on comparing model performance between these two types of models on crime prediction. In this study, we aimed to predict burglary occurrence in Los Angeles City, and compared a basic model just using prior year burglary occurrence with advanced models including linear regressor and random forest regressor. In addition, American Community Survey data was used to provide neighborhood level socio-economic features. After finishing data preprocessing steps that regularize the dataset, recursive feature elimination was utilized to determine the final features and the parameters of the two advanced models. Finally, to find out the best fit model, three metrics were used to evaluate model performance: R squared, adjusted R squared and mean squared error. The results indicate that linear regressor is the most suitable model among three models applied in the study with a slightly smaller mean squared error than that of basic model, whereas random forest model performed worse than the basic model. With a much more complex learning steps, advanced models did not show prominent advantages, and further research to extend the current study were discussed.
文摘Crimes are expected to rise with an increase in population and the rising gap between society’s income levels.Crimes contribute to a significant portion of the socioeconomic loss to any society,not only through its indirect damage to the social fabric and peace but also the more direct negative impacts on the economy,social parameters,and reputation of a nation.Policing and other preventive resources are limited and have to be utilized.The conventional methods are being superseded by more modern approaches of machine learning algorithms capable of making predictions where the relationships between the features and the outcomes are complex.Making it possible for such algorithms to provide indicators of specific areas that may become criminal hot-spots.These predictions can be used by policymakers and police personals alike to make effective and informed strategies that can curtail criminal activities and contribute to the nation’s development.This paper aims to predict factors that most affected crimes in Saudi Arabia by developing a machine learning model to predict an acceptable output value.Our results show that FAMD as features selection methods showed more accuracy on machine learning classifiers than the PCA method.The naïve Bayes classifier performs better than other classifiers on both features selections methods with an accuracy of 97.53%for FAMD,and PCA equals to 97.10%.
文摘There has been evidence of crime in the US since colonization. In this article, we analyze the crime statistics of San Francisco and its resolution of crime recorded from January to September of the year 2018. We define resolution of crime as a target variable and study its relationship with other variables. We make several classification models to predict resolution of crime using several data mining techniques and suggest the best model for predicting resolution.
文摘This study proposes an architecture for the prediction of extremist human behaviour from projected suicide bombings.By linking‘dots’of police data comprising scattered information of people,groups,logistics,locations,communication,and spatiotemporal characters on different social media groups,the proposed architecture will spawn beneficial information.This useful information will,in turn,help the police both in predicting potential terrorist events and in investigating previous events.Furthermore,this architecture will aid in the identification of criminals and their associates and handlers.Terrorism is psychological warfare,which,in the broadest sense,can be defined as the utilisation of deliberate violence for economic,political or religious purposes.In this study,a supervised learning-based approach was adopted to develop the proposed architecture.The dataset was prepared from the suicide bomb blast data of Pakistan obtained from the South Asia Terrorism Portal(SATP).As the proposed architecture was simulated,the supervised learning-based classifiers na飗e Bayes and Hoeffding Tree reached 72.17%accuracy.One of the additional benefits this study offers is the ability to predict the target audience of potential suicide bomb blasts,which may be used to eliminate future threats or,at least,minimise the number of casualties and other property losses.