This paper deals with the blow up properties of solutions to semilinear heat equation u t- Δ u=u p in R N +×(0,T) with the nonlinear boundary condition -ο u ο x 1 = u q for x 1=0,t∈(0,T) ....This paper deals with the blow up properties of solutions to semilinear heat equation u t- Δ u=u p in R N +×(0,T) with the nonlinear boundary condition -ο u ο x 1 = u q for x 1=0,t∈(0,T) .It has been proved that if max( p,q) ≤1,every nonnegative solution is global.When min (p,q) >1 by letting α=1p-1 and β=12(q-1) it follows that if max (α,β)≥N2 ,all nontrivial nonnegative solutions are nonglobal,whereas if max (α,β)<N2 ,there exist both global and nonglobal solutions.Moreover,the exact blow up rates are established.展开更多
形如 f″(x)+g(x)·f(x)=0的微分方程,其中 g(x)是 x 的周期函数.这类方程就是马奇耶方程.马奇耶(Mathieu)方程在实际工程中有着广泛的应用.关于它的周期解的研究,是结构动力屈曲分析的理论基础;同时也是常微分方程稳定性理论的—...形如 f″(x)+g(x)·f(x)=0的微分方程,其中 g(x)是 x 的周期函数.这类方程就是马奇耶方程.马奇耶(Mathieu)方程在实际工程中有着广泛的应用.关于它的周期解的研究,是结构动力屈曲分析的理论基础;同时也是常微分方程稳定性理论的—个重要内容.在马奇耶方程的周期解中,稳定与不稳定解的分界线即临界解是十分重要的.本文给出了临界解的求解方法,证明了临界频率方程的收敛性,讨论了某些干扰因素对临界解的影响。在实际工程中,这些干扰因素体现在结构阻尼,结构初始缺陷,结构的非线性几何点系结构的纵向惯性矩及转动惯性矩、复合材料的耦合效应等.计算结果表明,对于马奇耶方程的微小干扰,都将严重影响其临界解甚至改变解的性质.因此,在分析结构动力屈曲问题时,必须考虑问题所能包含的上述各项因素.展开更多
文摘This paper deals with the blow up properties of solutions to semilinear heat equation u t- Δ u=u p in R N +×(0,T) with the nonlinear boundary condition -ο u ο x 1 = u q for x 1=0,t∈(0,T) .It has been proved that if max( p,q) ≤1,every nonnegative solution is global.When min (p,q) >1 by letting α=1p-1 and β=12(q-1) it follows that if max (α,β)≥N2 ,all nontrivial nonnegative solutions are nonglobal,whereas if max (α,β)<N2 ,there exist both global and nonglobal solutions.Moreover,the exact blow up rates are established.
文摘形如 f″(x)+g(x)·f(x)=0的微分方程,其中 g(x)是 x 的周期函数.这类方程就是马奇耶方程.马奇耶(Mathieu)方程在实际工程中有着广泛的应用.关于它的周期解的研究,是结构动力屈曲分析的理论基础;同时也是常微分方程稳定性理论的—个重要内容.在马奇耶方程的周期解中,稳定与不稳定解的分界线即临界解是十分重要的.本文给出了临界解的求解方法,证明了临界频率方程的收敛性,讨论了某些干扰因素对临界解的影响。在实际工程中,这些干扰因素体现在结构阻尼,结构初始缺陷,结构的非线性几何点系结构的纵向惯性矩及转动惯性矩、复合材料的耦合效应等.计算结果表明,对于马奇耶方程的微小干扰,都将严重影响其临界解甚至改变解的性质.因此,在分析结构动力屈曲问题时,必须考虑问题所能包含的上述各项因素.