The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L...The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the elastic and plastic constants.展开更多
This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncert...This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncertain variables can be embedded into the Banach space C[0, 1] × C[0, 1] isometrically and isomorphically, is developed. Based on this embedding theorem, each objective with uncertain coefficients can be transformed into two objectives with crisp coefficients. The solution of the original m-objectives optimization problem with uncertain coefficients will be obtained by solving the corresponding 2 m-objectives crisp optimization problem. The R & D project portfolio decision deals with future events and opportunities, much of the information required to make portfolio decisions is uncertain. Here parameters like outcome, risk, and cost are considered as uncertain variables and an uncertain bi-objective optimization problem with some useful constraints is developed. The corresponding crisp tetra-objective optimization model is then developed by embedding theorem. The feasibility and effectiveness of the proposed method is verified by a real case study with the consideration that the uncertain variables are triangular in nature.展开更多
The authors looked upon it as real options and applied the VaR(Value at Risk) method to the evaluation of its risk value based on the analysis of R & D project investment characteristics,and advanced the evaluatio...The authors looked upon it as real options and applied the VaR(Value at Risk) method to the evaluation of its risk value based on the analysis of R & D project investment characteristics,and advanced the evaluation model of the project’s return and risk according to financial theories.This paper expounded the two dimension evaluation model of project,and divided it into five decision making regions.展开更多
基金supported by the National Natural Science Foundation of China (11032001)the K.C.Wong Magna Fund in Ningbo University
文摘The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the elastic and plastic constants.
文摘This paper introduces a novice solution methodology for multi-objective optimization problems having the coefficients in the form of uncertain variables. The embedding theorem, which establishes that the set of uncertain variables can be embedded into the Banach space C[0, 1] × C[0, 1] isometrically and isomorphically, is developed. Based on this embedding theorem, each objective with uncertain coefficients can be transformed into two objectives with crisp coefficients. The solution of the original m-objectives optimization problem with uncertain coefficients will be obtained by solving the corresponding 2 m-objectives crisp optimization problem. The R & D project portfolio decision deals with future events and opportunities, much of the information required to make portfolio decisions is uncertain. Here parameters like outcome, risk, and cost are considered as uncertain variables and an uncertain bi-objective optimization problem with some useful constraints is developed. The corresponding crisp tetra-objective optimization model is then developed by embedding theorem. The feasibility and effectiveness of the proposed method is verified by a real case study with the consideration that the uncertain variables are triangular in nature.
文摘The authors looked upon it as real options and applied the VaR(Value at Risk) method to the evaluation of its risk value based on the analysis of R & D project investment characteristics,and advanced the evaluation model of the project’s return and risk according to financial theories.This paper expounded the two dimension evaluation model of project,and divided it into five decision making regions.